Journal of Environmental Radioactivity

Publisher: Elsevier

Journal description

Current impact factor: 3.57

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 3.571
2012 Impact Factor 2.119
2011 Impact Factor 1.339
2010 Impact Factor 1.466
2009 Impact Factor 1.268
2008 Impact Factor 1.114
2007 Impact Factor 0.963
2006 Impact Factor 1.073
2005 Impact Factor 1.243
2004 Impact Factor 1.188
2003 Impact Factor 0.837
2002 Impact Factor 0.674
2001 Impact Factor 0.726
2000 Impact Factor 0.764
1999 Impact Factor 0.881
1998 Impact Factor 0.958
1997 Impact Factor 0.638
1996 Impact Factor 1.014
1995 Impact Factor 0.672
1994 Impact Factor 0.505
1993 Impact Factor 0.484
1992 Impact Factor 0.436

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.49
Cited half-life 6.20
Immediacy index 0.48
Eigenfactor 0.01
Article influence 0.42
ISSN 1879-1700

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, arXiv.org or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We reported previously that radiocesium ((137)Cs) concentrations in earthworms increased with those in litter and/or soil in Fukushima Prefecture forests 0.5 y after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. This study provides further results for 1.5 and 2.5 y after the accident and discusses temporal changes in (137)Cs concentrations and transfer factors (TF) from litter to earthworms to better understand the mechanisms by which (137)Cs enters soil food webs. The concentration of (137)Cs in accumulated litter on the forest floor rapidly decreased, and the concentration in soil (0-5-cm depth) increased over time from 0.5 to 1.5 y, but changed only moderately from 1.5 to 2.5 y. The concentration of (137)Cs in earthworms consistently decreased during the study period; values 2.5 y after the accident were 18.8-68.5% of those 0.5 y after the accident. The TFs from accumulated litter to earthworms decreased over time: 0.24 ± 0.08 (mean ± SD) at 0.5 y and 0.16 ± 0.04 at 2.5 y. This decrease may be a result of decreases in the bioavailability of (137)Cs in litter and the surface soil layer. Changes in (137)Cs bioavailability should be continuously tracked to determine any changes in the relationship between radiocesium concentrations in earthworms and that in accumulated litter or soil. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 07/2015; 145. DOI:10.1016/j.jenvrad.2015.03.015
  • [Show abstract] [Hide abstract]
    ABSTRACT: An assessment is given of the possibility of sorbents based on natural aluminosilicates (glauconite and clinoptilolite) being used for remediation of radioactively contaminated land with the aim of returning it to farming use. A comparative study of selectivity and reversibility of radiocaesium and radiostrontium sorption by natural aluminosilicates as well as by modified ferrocyanide sorbents based on these aluminosilicates was made. It was found that surface modification of aluminosilicates by ferrocyanides increases the selectivity of synthesized sorbents to caesium by 100-1000 times, increases sorption capacity and makes caesium sorption almost irreversible, whereas, selectivity of these sorbents to strontium radionuclides remains approximately the same as for natural aluminosilicates. The caesium distribution coefficient for mixed nickel-potassium ferrocyanide on glauconite is 10((5.0±0.6)) L kg(-1), the static exchange capacity (SEC) is 63 mg g(-1); for mixed nickel-potassium ferrocyanide based on clinoptilolite caesium distribution coefficients in various concentration ranges are 10((7.0±1.0)), 10((5.7±0.4)) and 10((3.2±0.7)) L kg(-1), total SEC was 500 mg g(-1). Caesium leaching by various leaching solutions from saturated mixed nickel-potassium ferrocyanide based on clinoptilolite was lower than 2%; from saturated mixed nickel-potassium ferrocyanide based on glauconite it was 1.5-14.6%. Ferrocyanide sorbents, based on glauconite and clinoptilolite are recommended for remediation of land, contaminated by caesium as a result of the Fukushima accident in Japan. Use of these sorbents should decrease the transfer of caesium to agricultural vegetation up to a factor of 20. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 144. DOI:10.1016/j.jenvrad.2015.03.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Portable high-resolution gamma-ray spectrometry was carried out to determine the natural radioactivity levels in high volume surface water samples of the northern coast of Oman Sea, covering the coastal strip from Hormoz strait to Goatr seaport, for the first time. The water samples from 36 coastal and near shore locations were collected for analysis. Analyses on the samples collected were carried out to determine (226)Ra, (232)Th and (40)K contents. The concentration of (226)Ra, (232)Th and (40)K in surface water samples ranged between 2.19 and 2.82 Bq/L, 1.66-2.17 Bq/L and 132.6-148.87 Bq/L, respectively. The activity profile of radionuclides shows low activity across the study area. The study also examined some radiation hazard indices. The external hazard index was found to be less than 1, indicating a low dose. The results of measurements will serve as background reference level for Oman Sea coastlines. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 144. DOI:10.1016/j.jenvrad.2015.03.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main phosphate industries in Brazil are responsible for the annual production of 5.5 million tons of a residue (phosphogypsum), which is stored in stacks. The presence of radionuclides and metals puts restrictions on the use of phosphogypsum in agriculture. To assure a safe utilization, it is important to estimate the lixiviation of the radionuclides ((238)U, (226)Ra, (210)Pb, (210)Po, (232)Th and (228)Ra) and metals (As, Cd, Cr, Ni, Se, Hg and Pb) present in phosphogypsum. For this purpose, an experiment was carried out, in which columns filled with sandy and clay Brazilian typical soils mixed with phosphogypsum were percolated with water, to achieve a mild extraction of these elements. The results obtained for the concentration of the radionuclides and metals in the leachate were low; giving evidence that, even when these elements are present in the phosphogypsum, they do not contribute to an enhancement of their content in water. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 144. DOI:10.1016/j.jenvrad.2015.03.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Environmental Radioactivity 06/2015; 144. DOI:10.1016/j.jenvrad.2015.03.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the behavior of nuclear accident-derived (137)Cs in river water under base-flow conditions, concentrations of dissolved and particulate (137)Cs were measured at 16 sampling points in seven rivers of Fukushima Prefecture, Japan, in 2012 and 2013. The concentration of dissolved (137)Cs was significantly correlated with the mean (137)Cs inventory in the catchment area above each sampling point in both sampling years. These results suggest that the concentration of dissolved (137)Cs under base-flow conditions is primarily determined by the (137)Cs inventory of the catchment area above the sampling point. However, the concentration of particulate (137)Cs did not show a clear relationship with either the mean (137)Cs inventory or the dissolved (137)Cs concentration, thus indicating that particulate and dissolved forms do not effectively interact in rivers. To evaluate the contribution of the (137)Cs inventory within catchment areas, we analyzed relations between the (137)Cs concentration and the mean (137)Cs inventory over the area within certain flow path lengths that were traced along the river and slope above the sampling point. Coefficients of determination for dissolved (137)Cs concentrations were highest for the longest flow path, i.e., the whole catchment area, and lower for shorter flow paths. Coefficients of determination for particulate (137)Cs concentrations were only moderately high for the shortest flow path in 2012, whereas the values were quite low for all flow paths in 2013. These results suggest that dissolved (137)Cs can originate from a larger area of the catchment even under base-flow conditions; however, particulate (137)Cs did not show such behavior. The results also show that under base-flow conditions, dissolved and particulate (137)Cs behave independently during their transport from river catchments to the ocean. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 144. DOI:10.1016/j.jenvrad.2015.03.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: The observed (36)Cl isotopic abundance in Great Lakes water decreases from west to east, with the highest (36)Cl/Cl ratio of 1332 × 10(-15) in Lake Superior and the lowest (36)Cl/Cl ratio of 151 × 10(-15) in Lake Erie, whereas the (36)Cl concentration ((36)Cl atoms/L) is lowest in Lake Superior and higher in the other Great Lakes. The (36)Cl concentration in Lake Superior is much higher than expected from normal atmospheric deposition over the basin, consistent with deposition of nuclear bomb-produced (36)Cl during 1952-1964. A conservative mass-balance model constrained by hydrological parameters and available (36)Cl fluence measurements predicts the (36)Cl abundances in the Great Lakes from 1945 to 2015, in excellent agreement with available data for Lakes Superior, Michigan, and Huron, but the model underestimates (36)Cl abundances for Lakes Erie and Ontario. However, assuming that (36)Cl demonstrates non-conservative behavior and is significantly retained in the drainage basins, a model incorporating a delayed input parameter successfully predicts observed (36)Cl concentrations in all of the Great Lakes. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 144. DOI:10.1016/j.jenvrad.2015.03.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite > vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 144. DOI:10.1016/j.jenvrad.2015.02.018
  • M B Froehlich, P Steier, G Wallner, L K Fifield
    [Show abstract] [Hide abstract]
    ABSTRACT: Anthropogenic (236)U and (239)Pu were measured in European roe deer antlers hunted between 1955 and 1977 which covers and extends beyond the period of intensive nuclear weapons testing (1954-1962). The antlers were hunting trophies, and hence the hunting area, the year of shooting and the approximate age of each animal is given. Uranium and plutonium are known to deposit in skeletal tissue. Since antler histology is similar to bone, both elements were expected in antlers. Furthermore, roe deer shed their antlers annually, and hence antlers may provide a time-resolved environmental archive for fallout radionuclides. The radiochemical procedure is based on a Pu separation step by anion exchange (Dowex 1×8) and a subsequent U purification by extraction chromatography using UTEVA(®). The samples were measured by Accelerator Mass Spectrometry at the VERA facility (University of Vienna). In addition to the (236)U and (239)Pu concentrations, the (240)Pu/(239)Pu isotopic ratios were determined with a mean value of 0.172 ± 0.023 which is in agreement with the ratio of global fallout (∼0.18). Rather high (236)U/(238)U ratios of the order of 10(-6) were observed. These measured ratios, where the (236)U arises only from global fallout, have implications for the use of the (236)U/(238)U ratio as a fingerprint for nuclear accidents or releases from nuclear facilities. Our investigations have shown the potential to use antlers as a temporally resolved archive for the uptake of actinides from the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; DOI:10.1016/j.jenvrad.2015.06.008
  • Pargin Bangotra, Rohit Mehra, Kirandeep Kaur, Sandeep Kanse, Rosaline Mishra, B K Sahoo
    [Show abstract] [Hide abstract]
    ABSTRACT: High concentration of radon ((222)Rn), thoron ((220)Rn) and their decay products in environment may increase the risk of radiological exposure to the mankind. The (222)Rn, (220)Rn concentration and their separate attached and unattached progeny concentration in units of EEC have been measured in the dwellings of Muktsar and Mansa districts of Punjab (India), using Pin-hole cup dosimeters and deposition based progeny sensors (DTPS/DRPS). The indoor (222)Rn and (220)Rn concentration was found to vary from 21 Bqm(-3) to 94 Bqm(-3) and 17 Bqm(-3) to 125 Bqm(-3). The average EEC (attached + unattached) of (222)Rn and (220)Rn was 25 Bqm(-3) and 1.8 Bqm(-3). The equilibrium factor for (222)Rn and (220)Rn in studied area was 0.47 ± 0.13 and 0.05 ± 0.03. The equilibrium factor and unattached fraction of (222)Rn and (220)Rn has been calculated separately. Dose conversion factors (DCFs) of different models have been calculated from unattached fraction for the estimation of annual effective dose in the studied area. From the experimental data a correlation relationship has been observed between unattached fraction (fp(Rn)) and equilibrium factor (FRn). The present work also aims to evaluate an accurate expression among available expression in literature for the estimation of fp(Rn). Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 148:67-73. DOI:10.1016/j.jenvrad.2015.06.010
  • N Gai, J Pan, X C Yin, X H Zhu, H Q Yu, Y Li, K Y Tan, X C Jiao, Y L Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Activities of atmospheric aerosols, bulk deposition fluxes, and undisturbed soil inventories of (7)Be were investigated in China's East Asian monsoon zone at various latitudes ranging from 23.8°N to 43.5°N. The annual latitudinal distributions of (7)Be concentrations in aerosols follow a distribution pattern which looks similar to a normal distribution with the maxima occurring in the mid-latitude region. Simultaneous measurements of (7)Be at various latitudes suggest that atmospheric circulation may play an important role in the latitudinal distributions of (7)Be in surface air. Latitude and wet precipitation are the main factors controlling the bulk (7)Be depositional fluxes. Significant seasonal variations in (7)Be depositional fluxes in Beijing, a mid-latitude city, were observed with the highest flux in summer and the lowest in winter, whereas less seasonality were found in the high- and the low-latitude cities. The highest (7)Be inventory in undisturbed soils in summer also occurred at a mid-latitudinal area in the East Asian monsoon zone. Precipitation is the main factor controlling the (7)Be soil inventory in Qingdao with the highest values occurring in autumn followed by summer. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; 148:59-66. DOI:10.1016/j.jenvrad.2015.06.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radon-222 exhalation flux densities from two different substrates of several metres thickness, waste rock and waste rock mixed with approximately 30% lateritic material, were measured over a period of five years in the wet-dry tropics of Northern Australia. Fourteen measurement campaigns using activated charcoal canisters (n > 1000) covered both dry and wet seasons and showed differences in seasonal and long term trends of the (222)Rn exhalation flux densities normalised to the (226)Ra activity concentrations of the substrate. Dry season (222)Rn exhalation was generally higher for the mixed substrate, due to the larger fraction of fines. Seasonality established within the first year of landform construction on the mixed substrate, due to the higher water holding capacity of the lateritic material. In contrast, waste rock only shows no seasonality until years four and five after construction, when average normalised dry season (222)Rn exhalation flux densities from waste rock increase to values (0.47 ± 0.06 mBq m(-2) s(-1) per Bq kg(-1)) similar to the mixed substrate (0.64 ± 0.08 mBq m(-2) s(-1) per Bq kg(-1)), likely due to an increase in fines from rapid weathering of the schistose waste rock. Volumetric water content has been used to parametrize relative (222)Rn exhalation and we determined that wet season (222)Rn exhalation is about 40% of the dry season exhalation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; DOI:10.1016/j.jenvrad.2015.06.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for (90)Sr and (137)Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007-2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Environmental Radioactivity 06/2015; DOI:10.1016/j.jenvrad.2015.05.023