Journal of Environmental Radioactivity

Publisher: Elsevier


  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • ISSN

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Voluntary deposit by author of pre-print allowed on Institutions open scholarly website and pre-print servers
    • Voluntary deposit by author of authors post-print allowed on institutions open scholarly website including Institutional Repository
    • Deposit due to Funding Body, Institutional and Governmental mandate only allowed where separate agreement between repository and publisher exists
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PMC after 12 months
    • Authors who are required to deposit in subject repositories may also use Sponsorship Option
    • Pre-print can not be deposited for The Lancet
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The paper summarizes results of monitoring of 137Cs activities in game species roaming in the woods over the territory of the Czech Republic for the time interval of 1986–2012. Geometric means and other statistical characteristics were estimated from the data sets on the assumption of log-normal distribution of the data from the time interval 2004–2012 where the character of data distribution had displayed no significant change. Geometric means (in Bq/kg) in meat were: wild boar 5.1, red deer 1.9, roe deer 0.77 and feathered game 0.14. The mean value in the less frequent game amounted to 0.36 Bq/kg. The geometrical standard deviation (GSD) widely varied from 1.6 to 21 for the studied species. Based on mass activity dependence on time, we assessed the effective and environmental half-lives of activity decline. For red deer and roe deer, the effective 137Cs half-life was 2.9 and 3.2 years, and environmental half-life 3.2 and 3.6 years respectively. The effective half-life of 137Cs in wild boar of 38 years was determined with large uncertainty and it shows constant influx of 137Cs activity to the digestive tract of wild boars. A statistically significant season-based 137Cs level was found in red deer and wild boar. Higher winter and spring activities of 137Cs in wild boar are linked with decreasing access to naturally occurring food with lower 137Cs content (chestnuts, acorns, and beech nuts), making boar grub around for ground-deposited food (often for mushrooms with higher activity). Higher winter activities of 137Cs in red deer meat, most probably, are due to lower access to green diet in winter. The average annual committed effective dose for Czech population based on estimates of game species meat consumption between 2004 and 2012 was insignificant, only 0.03 μSv.
    Journal of Environmental Radioactivity 01/2015; 139:18-23.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the cessation of phosphoric acid production (in 1992) and subsequent closure and decommissioning (2004) of the Rhodia Consumer Specialties Limited plant in Whitehaven, the concentration levels of polonium-210 (210Po) in local marine materials have declined towards a level more typical of natural background. However, enhanced concentrations of 210Po and lead-210 (210Pb), due to this historic industrial activity (plant discharges and ingrowth of 210Po from 210Pb), have been observed in fish and shellfish samples collected from this area over the last 20 years. The results of this monitoring, and assessments of the dose from these radionuclides, to high-rate aquatic food consumers are published annually in the Radioactivity in Food and the Environment (RIFE) report series. The RIFE assessment uses a simple approach to determine whether and by how much activity is enhanced above the normal background. As a potential tool to improve the assessment of enhanced concentrations of 210Po in routine dose assessments, a formal statistical test, where the null hypothesis is that the Whitehaven area is contaminated with 210Po, was applied to sample data. This statistical, modified “green”, test has been used in assessments of chemicals by the OSPAR commission. It involves comparison of the reported environmental concentrations of 210Po in a given aquatic species against its corresponding Background Assessment Concentration (BAC), which is based upon environmental samples collected from regions assumed to be not enhanced by industrial sources of 210Po, over the period for which regular monitoring data are available (1990–2010). Unlike RIFE, these BAC values take account of the variability of the natural background level. As an example, for 2010 data, crab, lobster, mussels and winkles passed the modified “green” test (i.e. the null hypothesis is rejected) and as such are deemed not to be enhanced. Since the cessation of phosphoric acid production in 1992, the modified “green” test pass rate for crustaceans is ∼53% and ∼64% for molluscs. Results of dose calculations are made (i) using the RIFE approach and (ii) with the application of the modified “green” test, where samples passing the modified “green” test are assumed to have background levels and hence zero enhancement of 210Po. Applying the modified “green” test reduces the dose on average by 44% over the period of this study (1990–2010).
    Journal of Environmental Radioactivity 10/2014; 138:289–301.
  • Journal of Environmental Radioactivity 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spatial distributions and temporal changes of radioactive fallout released by the Fukushima Dai-ichi Nuclear Power Plant accident have been investigated by two campaigns with three measurement schedules. The inventories (activities per unit area) of the radionuclides deposited onto ground soil were measured using portable gamma-ray spectrometers at nearly 1000 locations (at most) per measurement campaign. Distribution maps of the inventories of (134)Cs, (137)Cs, and (110m)Ag as of March, September, and December 2012 were constructed. No apparent temporal change of the radionuclide inventories was observed from March to December 2012. Weathering effects (e.g., horizontal mobility) were not noticeable during this period. Spatial dependence in the ratios of (134)Cs/(137)Cs and (110m)Ag/(137)Cs were observed in the Tohoku and Kanto regions. The detailed maps of (134)Cs and (137)Cs as of September 2012 and December 2012 were constructed using the relationship between the air dose rate and the inventory.
    Journal of Environmental Radioactivity 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The BIOMASS methodology was developed with the objective of constructing defensible assessment biospheres for assessing potential radiological impacts of radioactive waste repositories. To this end, a set of Example Reference Biospheres were developed to demonstrate the use of the methodology and to provide an international point of reference. In this paper, the performance of the Example Reference Biosphere model ERB 2B associated with the natural release scenario, discharge of contaminated groundwater to the surface environment, was evaluated by comparing its long-term projections of radionuclide dynamics and distribution in a soil-plant system to those of a process-based, transient advection-dispersion model (AD). The models were parametrised with data characteristic of a typical rainfed winter wheat crop grown on a sandy loam soil under temperate climate conditions. Three safety-relevant radionuclides, (99)Tc, (129)I and (237)Np with different degree of sorption were selected for the study. Although the models were driven by the same hydraulic (soil moisture content and water fluxes) and radiological (Kds) input data, their projections were remarkably different. On one hand, both models were able to capture short and long-term variation in activity concentration in the subsoil compartment. On the other hand, the Reference Biosphere model did not project any radionuclide accumulation in the topsoil and crop compartments. This behaviour would underestimate the radiological exposure under natural release scenarios. The results highlight the potential role deep roots play in soil-to-plant transfer under a natural release scenario where radionuclides are released into the subsoil. When considering the relative activity and root depth profiles within the soil column, much of the radioactivity was taken up into the crop from the subsoil compartment. Further improvements were suggested to address the limitations of the Reference Biosphere model presented in this paper.
    Journal of Environmental Radioactivity 10/2014; 138C:279-288.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The spatial distributions of radiocesium concentration in sea sediment to a core depth of 14 cm were investigated in the offshore region from the Fukushima Prefecture to the northern part of the Ibaraki Prefecture in February and July 2012, at a spatial resolution of 5 min of latitude and longitude. The concentrations in the area south of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) were generally higher than those in the area north of it. In the southern area, a band of especially high concentration with a width about 20 km was present in the region shallower than 100 m, and a narrow minimal concentration band was found along the 200-m isobaths. In more than half of all cases, the vertical core profiles of radiocesium concentration generally showed an exponential decreasing trend with depth. However, in the area north of the FDNPP, where the radiocesium concentrations tended to be very low, radiocesium concentrations that had similar or larger magnitude compared with those of the most-surface layer were often found in deeper layers. Relatively good correlations were found between radiocesium concentrations and grain sizes of the most-surface sediment. The vertical profile of radiocesium concentration also had a relationship with grain size. In other case, the radiocesium concentration in the sediment seems to have had a dependence on the radiocesium concentration in bottom seawater, suggesting that the quantity of radiocesium supplied and the grain size were major factors determining the spatial distribution pattern of the radiocesium concentration after the FDNPP accident.
    Journal of Environmental Radioactivity 09/2014; 138:264–275.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of technologically enhanced, localised contributions to dose rate values are also apparent in the data sets. Two detailed examples are provided that reveal the detectability of site-scale environmental impacts due to former industrial activities and the high dose values (>500 nGy h(-1)) that are associated with former, small-scale Uranium mining operations.
    Journal of Environmental Radioactivity 09/2014; 138C:249-263.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studying the geographical distribution of indoor radon concentration, using geostatistical interpolation methods, has become common for predicting and estimating the risk to the population. Here we analyse the case of Friuli Venezia Giulia (FVG), the north easternmost region of Italy. Mean value and standard deviation are, respectively, 153 Bq/m(3) and 183 Bq/m(3). The geometric mean value is 100 Bq/m(3). Spatial datasets of indoor radon concentrations are usually affected by clustering and apparent non-stationarity issues, which can eventually yield arguable results. The clustering of the present dataset seems to be non preferential. Therefore the areal estimations are not expected to be affected. Conversely, nothing can be said on the non stationarity issues and its effects. After discussing the correlation of geology with indoor radon concentration It appears they are created by the same geologic features influencing the mean and median values, and can't be eliminated via a map-based approach. To tackle these problems, in this work we deal with multiple definitions of RPA, but only in quaternary areas of FVG, using extensive simulation techniques.
    Journal of Environmental Radioactivity 09/2014; 138C:208-219.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yearly changes in radiocesium (137Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%–220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms.
    Journal of Environmental Radioactivity 09/2014; 138:220–226.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to their sensitivity and ease of use, alpha-scintillation cells are being increasingly utilized for measurements of radon ((222)Rn) in natural gas. Laboratory studies showed an average increase of 7.3% in the measurement efficiency of alpha-scintillation cells when filled with less-dense natural gas rather than regular air. A theoretical calculation comparing the atomic weight and density of air to that of natural gas suggests a 6-7% increase in the detection efficiency when measuring radon in the cells. A correction is also applicable when the sampling location and measurement laboratory are at different elevations. These corrections to the measurement efficiency need to be considered in order to derive accurate concentrations of radon in natural gas.
    Journal of Environmental Radioactivity 09/2014; 138C:205-207.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Distribution maps of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant were constructed using the results of measurement obtained from approximately 6500 locations (at most) per measurement period. The measurements were conducted 1 m above the ground using survey meters in flat and spatially open locations. Spatial distribution and temporal change of the air dose rate in the area were revealed by examining the resultant distribution maps. The observed reduction rate of the air dose rate over the 18 months between June 2011 and December 2012 was greater than that calculated from radioactive decay of radiocesium by 10% in relative percentage except decontaminated sites. This 10% difference in the reduction of the air dose rate can be explained by the mobility of radiocesium in the depth direction. In the region where the air dose rate was lower than 0.25 μSv h(-1) on June 2011, the reduction of the air dose rate was observed to be smaller than that of the other dose rate regions, and it was in fact smaller than the reduction rate caused by radioactive decay alone. In contrast, the reduction rate was larger in regions with higher air dose rates. In flat and spatially open locations, no significant difference in the reduction tendency of air dose rates was observed among different land use classifications (rice fields, farmland, forests, and building sites).
    Journal of Environmental Radioactivity 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 2011-2013, sampling of epiphytic fruticose lichens of the genera Usnea, Bryoria and Alectoria was carried out on Sakhalin and Kuril Islands (the Sakhalin region, Russia) to investigate contamination of these organisms with the Fukushima-derived (134)Cs and (137)Cs. Activities of the radionuclides were determined in all 56 samples of lichens taken for the analysis. After correction for radioactive decay (on 15 March 2011), the activity concentrations ranged from 2.1 Bq kg(-1) (d.w.) to 52 Bq kg(-1) for (134)Cs and from 2.3 Bq kg(-1) to 52 Bq kg(-1) for (137)Cs. Cesium-134 and (137)Cs activities for the whole set of lichens (n = 56) were strongly positively correlated; Spearman's rank correlation coefficient was calculated as 0.991 (P < 0.01). The activity concentrations of (134)Cs and (137)Cs in Usnea lichens from the Sakhalin and Kunashir islands declined with a factor of three in the period from 2011 to 2013. The average biological half-time for both cesium radionuclides in lichens of the genus Usnea is estimated as 1.3 y. The mean of 0.99 ± 0.10 and median of 0.99 were calculated for the decay corrected (134)Cs/(137)Cs activities ratios in the lichens (n = 56). The radionuclides ratio in the lichens did not depend on location of sampling site, species and the time that had passed after the Fukushima accident. The regression analysis has shown the background pre-Fukushima level of (137)Cs of 0.4 ± 0.3 Bq kg(-1), whereas the ratio between the Fukushima-borne (134)Cs and (137)Cs in the lichens was estimated as 1.04. The (134)Cs/(137)Cs activities ratio in lichens from the Sakhalin region is consistent with the ratios reported by others for the heavy contaminated areas on Honshu Island in Japan following the Fukushima accident. The activity concentrations of natural (7)Be in lichens from the Sakhalin region varied between 100 Bq kg(-1) and 600 Bq kg(-1); the activity concentrations did not exhibit temporal variations during a 2y-period of observations. The applicability of epiphytic fruticose lichens as retrospective bio-monitors for the air-borne radiocesium contamination of the environment is discussed.
    Journal of Environmental Radioactivity 09/2014; 138:177–185.
  • [Show abstract] [Hide abstract]
    ABSTRACT: An extensive investigation of particulate radiocaesium in suspended solids and dissolved radiocaesium in river water was undertaken at 30 sites in Fukushima and Miyagi Prefectures in December 2012, and their relationships with catchment inventory and the solid/liquid distribution coefficient (Kd) were evaluated. Rivers located in the coastal region on the north side of the Fukushima Dai-ichi Nuclear Power Plant exhibited relatively higher particulate radiocaesium concentrations. Significant correlations were found between concentrations of particulate/dissolved radiocaesium and average catchment inventories, indicating that the concentrations of particulate/dissolved radiocaesium could be approximated from the catchment inventory. Particulate radiocaesium concentration was significantly correlated with dissolved radiocaesium concentration (with the exception of concentrations measured in estuaries), and the geometric mean Kd was calculated as 3.6 × 10(5) with a 95% confidence interval of 2.6-5.1 × 10(5).
    Journal of Environmental Radioactivity 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Forest fires and wild fires are recognized as a possible cause of resuspension and redistribution of radioactive substances when occurring on lands contaminated with such materials, and as such are a matter of concern within the regions of Belarus and the Ukraine which were contaminated by the Chernobyl accident in 1986. Modelling the effects of such fires on radioactive contaminants is a complex matter given the number of variables involved. In this paper, a probabilistic model was developed using empirical data drawn from the Polessie State Radiation-Ecological Reserve (PSRER), Belarus, and the Maximum Entropy Method. Using the model, it was possible to derive estimates of the contribution of fire events to overall variability in the levels of (137)Cs and (239,240)Pu in ground air as well as estimates of the deposition of these radionuclides to specific water bodies within the contaminated areas of Belarus. Results indicate that fire events are potentially significant redistributors of radioactive contaminants within the study area and may result in additional contamination being introduced to water bodies.
    Journal of Environmental Radioactivity 09/2014; 138C:170-176.
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the spring and summer months of 2012, (210)Po and (210)Pb activity were measured in the dissolved and particulate phases from the Delaware and upper Chesapeake estuaries. The upper Delaware estuary, near the freshwater end member, was characterized by high-suspended matter concentrations that scavenged dissolved (210)Po and (210)Pb. Box models were applied using mass balance calculations to assess the nuclides residence times in each estuary. Only 60% of the dissolved (210)Po and 55% of the dissolved (210)Pb from the Delaware estuary were exported to coastal waters. A large fraction of soluble (210)Po and (210)Pb within the estuary was either reversibly adsorbed onto suspended particles, trapped in sediment accumulation zones (such as intertidal marshes), bioaccumulated into phytoplankton and discharged to the coastal ocean. The upper Chesapeake estuary was largely characterized by sub-oxic bottom waters that contained higher concentrations of dissolved (210)Po and (210)Pb, hypothesized to be subjected to redox cycling of manganese. The Delaware and Chesapeake estuary mean residence times for (210)Po differed significantly at 86 ± 7 and 126 ± 10 days respectively, while they were similar for (210)Pb (67 ± 6-55 ± 5 days). The difference in residence times corresponds to the greater extent of biogeochemical scavenging and regeneration processes within the upper Chesapeake.
    Journal of Environmental Radioactivity 09/2014;