Journal of insect physiology Impact Factor & Information

Publisher: Elsevier

Journal description

Current impact factor: 2.50

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.5
2012 Impact Factor 2.379
2011 Impact Factor 2.236
2010 Impact Factor 2.31
2009 Impact Factor 2.235
2008 Impact Factor 2.155
2007 Impact Factor 2.294
2006 Impact Factor 2.019
2005 Impact Factor 2.04
2004 Impact Factor 1.547
2003 Impact Factor 1.933
2002 Impact Factor 1.789
2001 Impact Factor 1.493
2000 Impact Factor 1.468
1999 Impact Factor 1.251
1998 Impact Factor 1.315
1997 Impact Factor 1.662
1996 Impact Factor 1.749
1995 Impact Factor 1.638
1994 Impact Factor 1.461
1993 Impact Factor 1.329
1992 Impact Factor 1.643

Impact factor over time

Impact factor

Additional details

5-year impact 2.36
Cited half-life 0.00
Immediacy index 0.55
Eigenfactor 0.01
Article influence 0.70
ISSN 1879-1611

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The thermal sense of triatomine bugs, vectors of Chagas disease, is unique among insects. Not only do these bugs exhibit the highest sensitivity to heat known in any animal up to date, but they can also perceive the infrared radiation emitted by the body of their warm-blooded hosts. The sensory basis of this capacity has just started to be unravelled. To shed additional light for our understanding of thermosensation, we initiated an analysis of the genetic basis of the thermal sense in Rhodnius prolixus. We tested the hypothesis that a TRPV (transient receptor potential vanilloid) channel receptor is involved in the evaluation of heat in this species. Two different approaches were adopted. Initially, we analysed the expression of a TRPV candidate for this function, i.e., RproIav, in different tissues. Subsequently, we tested the effects of capsaicin and capsazepine, two molecules known to interact with mammal TRPV1, using three different behavioural protocols for evaluating thermal responses: 1) proboscis extension response (PER), 2) thermopreference in a temperature gradient and 3) spatial learning in an operant conditioning context. Bioinformatic analyses confirmed that the characteristic features typical of the TRPV channel subfamily are found in the RproIav protein sequence. Molecular analysis showed that RproIav is expressed in R. prolixus, not only in the antennae, but also in other body structures bearing sensory organs. Behavioural experiments consistently revealed that capsaicin treated insects are less responsive to heat stimuli and prefer lower temperatures than non-treated insects, and that they fail to orient in space. Conversely, capsazepine induces the opposite behaviours. The latter data suggest that triatomine thermoreception is based on the activation of a TRP channel, with a similar mechanism to that described for mammal TRPV1. The expression of RproIav in diverse sensory structures suggests that this receptor channel is potentially involved in bug thermoreception. This constitutes solid evidence that thermosensation could be based on the activation of TRP receptors that are expressed in different tissues in R. prolixus. Whether RproIav channel is a potential target for the compounds tested and whether it mediates the observed effects on behaviour still deserves to be confirmed by further research. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among plant-parasitic nematodes, the root-knot nematodes (RKN) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insect repellents are known since many decades ago and constitute a major tool for personal protection against the biting of mosquitoes. Despite their wide use, the understanding of why and how repellents repel is relatively recent. In particular, the question about to what extent insects other than mosquitoes are repulsed by repellents remains open. We developed a series of bioassays aimed to test the performance of well established as well as potential repellent molecules on the Chagas disease vector Rhodnius prolixus. Besides testing their ability to prevent biting, we tested the way in which they act, i.e., by obstructing the detection of attractive odours or by themselves. By using three different experimental protocols (host-biting, open-loop orientation to odours and heat-triggered Proboscis Extension Response) we show that DEET repels bugs both in the presence and in the absence of host-associated odours but only at the highest quantities tested. Piperidine was effective with or without a host and Icaridine only repelled in the absence of a living host. Three other molecules recently proposed as potential repellents due to their affinity to the Ir40a(+) receptor (which is also activated by DEET) did not evoke significant repellency. Our work provides novel experimental tools and sheds light on the mechanism behind repellency in haematophagous bugs. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odours interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioural synergism of pheromone and plant odours starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioural synergism of pheromone and plant odors. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Entomotoxic plant lectins have been extensively studied in the past two decades, yet the exact mechanisms underlying their toxic effects remain unknown. This study investigated the effects of Dioclea violacea lectin (DVL) on larval development in Anagasta kuehniella. Chronic exposure of larvae (from neonates to the fourth instar) demonstrated that DVL interfered with larval growth, retarding development and decreasing larval mass without affecting survival. DVL decreased trypsin-like, chymotrypsin-like, and α-amylase activities and proved resistant to proteolysis by midgut proteases up to 24 h. Shorter exposures to dietary DVL had no effect on midgut enzyme activity. Feeding fourth-instar larvae with fluorescently-labeled DVL revealed lectin binding to the peritrophic membrane. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insects rely on an innate immune system to effectively respond to pathogenic challenges. Most studies on the insect immune system describe changes in only one or two immune parameters following a single immune challenge. In addition, a variety of insect models, often at different developmental stages, have been used, making it difficult to compare results across studies. In this study, we used adult male Acheta domesticus crickets to characterize the response of the insect innate immune system to three different immune challenges: injection of bacterial lipopolysaccharides (LPS); injection of live S. marcescens bacteria; or insertion of a nylon filament into the abdomen. For each challenge, we measured and compared hemolymph phenoloxidase (PO) and lysozyme-like enzyme activities; the number of circulating hemocytes; and the nodulation responses of challenged and un-challenged crickets. We found that injection of an LD50 dose of LPS from E. coli elicited a more rapid response than an LD50 dose of LPS from S. marcescens. LPS injection could cause a rapid decrease 2 hpi, followed by an increase by 7 dpi, in the number of circulating hemocytes. In contrast, injection of live S. marcescens produced a rapid increase and then decrease in hemocyte number. This was followed by an increase in the number of hemocytes at 7 dpi, similar to that observed following LPS injection. Both LPS and live bacteria decreased hemolymph PO activity, but the timing of this effect was dependent on the challenge. Live bacteria, but not LPS, induced an increase in lysozyme-like activity in the hemolymph. Insertion of a nylon filament induced a decrease in hemolymph PO activity 2 h after insertion of the filament, but had no effect on hemocyte number or lytic activity. Our results indicate that the innate immune system's response to each type of challenge can vary greatly in both magnitude and timing, so it is important to assess multiple parameters at multiple time points in order to obtain a comprehensive view of such responses. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organisms from slime moulds to humans carefully regulate their macronutrient intake to optimize a wide range of life history characters including survival, stress resistance, and reproductive success. However, life history characters often differ in their response to nutrition, forcing organisms to make foraging decisions while balancing the trade-offs between these effects. To date, we have a limited understanding of how the nutritional environment shapes the relationship between life history characters and foraging decisions. To gain insight into the problem, we used a geometric framework for nutrition to assess how the protein and carbohydrate content of the larval diet affected key life history traits in the fruit fly, Drosophila melanogaster. In no-choice assays, survival from egg to pupae, female and male body size, and ovariole number - a proxy for female fecundity - were maximized at the highest protein to carbohydrate (P:C) ratio (1.5:1). In contrast, development time was minimized at intermediate P:C ratios, around 1:2. Next, we subjected larvae to two-choice tests to determine how they regulated their protein and carbohydrate intake in relation to these life history traits. Our results show that larvae targeted their consumption to P:C ratios that minimized development time. Finally, we examined whether adult females also chose to lay their eggs in the P:C ratios that minimized developmental time. Using a three-choice assay, we found that adult females preferentially laid their eggs in food P:C ratios that were suboptimal for all larval life history traits. Our results demonstrate that D. melanogaster larvae make foraging decisions that trade-off developmental time with body size, ovariole number, and survival. In addition, adult females make oviposition decisions that do not appear to benefit the larvae. We propose that these decisions may reflect the living nature of the larval nutritional environment in rotting fruit. These studies illustrate the interaction between the nutritional environment, life history traits, and foraging choices in D. melanogaster, and lend insight into the ecology of their foraging decisions. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.07.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternally inherited endosymbiotic bacteria of the genus Wolbachia cause various reproductive alterations in their hosts. Wolbachia induces male-specific death during embryonic and larval stages in the moth Ostrinia scapulalis. To investigate how the density of Wolbachia affects their performance in the host, we attempted to reduce its density using a short, high-temperature treatment of the host at the larval stage. Individuals cured of infection as well as sexual mosaics, which harbor Wolbachia, were obtained by this method in the next generation. The sex of uninfected offspring was exclusively male, similar to that of the offspring of larvae treated with antibiotics. A strong correlation was found between Wolbachia density in female moths and the sex ratio of their progeny. These results suggest that a short, high-temperature treatment at the larval stage reduced the density of Wolbachia in the adult stage, and, hence, inhibited interference with the host's development in the next generation. Since the direct effects of the heat treatment on Wolbachia were transient, this method may be useful for specifying the critical time for interference by Wolbachia in host development. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 07/2015; DOI:10.1016/j.jinsphys.2015.06.016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insect herbivores that ingest protein and carbohydrates in physiologically-optimal proportions and concentrations show superior performance and fitness. The first-ever study of protein-carbohydrate regulation in an insect herbivore was performed using the polyphagous agricultural pest Helicoverpa zea. In that study, experimental final instar caterpillars were presented two diets - one containing protein but no carbohydrates, the other containing carbohydrates but no protein - and allowed to self-select their protein-carbohydrate intake. The results showed that H. zea selected a diet with a protein-to-carbohydrate (p:c) ratio of 4:1. At about this same time, the geometric framework (GF) for the study of nutrition was introduced. The GF is now established as the most rigorous means to study nutrient regulation (in any animal). It has been used to study protein-carbohydrate regulation in several lepidopteran species, which exhibit a range of self-selected p:c ratios between 0.8-1.5. Given the economic importance of H. zea, and its extremely protein-biased p:c ratio of 4:1 relative to those reported for other lepidopterans, we decided to revisit its protein-carbohydrate regulation. Our results, using the experimental approach of the GF, show that H. zea larvae self-select a p:c ratio of 1.6:1. This p:c ratio strongly matches that of its close relative, Heliothis virescens, and is more consistent with self-selected p:c ratios reported for other lepidopterans. Having accurate protein and carbohydrate regulation information for an insect herbivore pest such as H. zea is valuable for two reasons. First, it can be used to better understand feeding patterns in the field, which might lead to enhanced management. Second, it will allow researchers to develop rearing diets that more accurately reflect larval nutritional needs, which has important implications for resistance bioassays and other measures of physiological stress. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 06/2015; DOI:10.1016/j.jinsphys.2015.06.015
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the late larval period, the salivary glands (SG) of Drosophila show a cascade of cytological changes associated with exocytosis and the expectoration of the proteinaceous glue that is used to affix the pupariating larva to a substrate. After puparium formation (APF), SG undergo extensive cytoplasmic vacuolation due to endocytosis, vacuole consolidation and massive apocrine secretion. Here we investigated possible correlations between cytological changes, the puffing pattern in polytene chromosomes and respiratory metabolism of the SG. The carefully staged SG were explanted into small amounts (1 or 2 μl) of tissue culture medium. The respiratory metabolism of single or up to 3 pairs of glands was evaluated by recording the rate of O2 consumption using a scanning microrespirographic technique sensitive to subnanoliter volumes of the respiratory O2 or CO2. The recordings were carried out at times between 8 h before pupariation (BPF), until 16 h APF, at which point the SG completely disintegrate. At the early wandering larval stage (8 h BPF), the glands consume 2 nl of O2/gland/min (= 2,500 μl O2/g/h). This relatively high metabolic rate decreases down to 1.2 - 1.3 nl of O2 during the endogenous peak in ecdysteroid concentration that culminates around pupariation. The metabolic decline coincides with the exocytosis of the proteinaceous glue. During and shortly after puparium formation, which is accompanied cytologically by intense vacuolation, O2 consumption in the SG temporarily increases to 1.6 nl O2/gland/min. After this time, the metabolic rate of the SG decreases downward steadily until 16 h APF, when the glands disintegrate and cease to consume oxygen. The SG we analyzed from Drosophila larvae were composed of 134 intrinsic cells, with the average volume of one lobe being 37 nl. Therefore, a single SG cell of the wandering larva (with O2 consumption of 2 nl/gland/min), consumes each about 16 pl of O2/cell/min. A simultaneous analysis of the rate of protein and RNA synthesis in the SG shows a course similar to that found in respiratory metabolism. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 06/2015; DOI:10.1016/j.jinsphys.2015.06.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the functional analysis of insect genes as well as for the production of recombinant proteins for biomedical use, clonal transgenic silkworms are very useful. We examined if they could be produced in the parthenogenetic strain that had been maintained for more than 40 years as a female line in which embryogenesis is induced with nearly 100% efficiency by a heat shock treatment of unfertilized eggs. All individuals have identical female genotype. Silkworm transgenesis requires injection of the DNA constructs into the non-diapausing eggs at the preblastodermal stage of embryogenesis. Since our parthenogenetic silkworms produce diapausing eggs, diapause programing was eliminated by incubating ovaries of the parthenogenetic strain in standard male larvae. Chorionated eggs were dissected from the implants, activated by the heat shock treatment and injected with the transgene construct. Several transgenic individuals occurred in the daughter generation. Southern blotting analysis of two randomly chosen transgenic lines VTG1 and VTG14 revealed multiple transgene insertions. Insertions found in the parental females were transferred to the next generation without any changes in their sites and copy numbers, suggesting that transgenic silkworms can be maintained as clonal strains with homozygous transgenes. Cryopreservation was developed for the storage of precious genotypes. As shown for the VTG1 and VTG14 lines, larval ovaries can be stored in DMSO at the temperature of liquid nitrogen, transferred to Gracés medium during defrosting, and then implanted into larvae of either sex of the standard silkworm strains C146 and w1-pnd. Chorionated eggs, which developed in the implants, were dissected and activated by the heat shock to obtain females (nearly 100% efficiency) or by a cold shock to induce development to both sexes in 4 % of the eggs. It was then possible to establish bisexual lines homozygous for the transgene. Copyright © 2015. Published by Elsevier Ltd.
    Journal of insect physiology 06/2015; 81. DOI:10.1016/j.jinsphys.2015.06.011