Current Opinion in Structural Biology (CURR OPIN STRUC BIOL)

Publisher: Elsevier

Journal description

Current Opinion in Structural Biology contains: Over 90 reviews from leading international contributors Web alerts of hot sites Paper alert service - the latest exciting papers Evaluated reference lists for all articles Annual author and subject index Online Fully searchable Access back issues Numerous links Search and read all issues published since 1984, giving you access to your own reference library without leaving your desk. Save valuable time by exploring our links to MEDLINE and numerous websites. Check out contents and abstracts FREE

Current impact factor: 8.75

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 8.747
2012 Impact Factor 8.738
2011 Impact Factor 9.424
2010 Impact Factor 9.903
2009 Impact Factor 9.344
2008 Impact Factor 9.06
2007 Impact Factor 10.15
2006 Impact Factor 11.215
2005 Impact Factor 9.559
2004 Impact Factor 9.821
2003 Impact Factor 8.686
2002 Impact Factor 9.63
2001 Impact Factor 10.893
2000 Impact Factor 10.427
1999 Impact Factor 8.633
1998 Impact Factor 8.69
1997 Impact Factor 7.509

Impact factor over time

Impact factor

Additional details

5-year impact 9.02
Cited half-life 7.20
Immediacy index 1.45
Eigenfactor 0.04
Article influence 4.60
Website Current Opinion in Structural Biology website
Other titles Bibliography of the current world literature., Current opinion in structural biology, Structural biology
ISSN 1879-033X
OCLC 23812553
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We discuss recent approaches for structure-based protein function annotation. We focus on template-based methods where the function of a query protein is deduced from that of a template for which both the structure and function are known. We describe the different ways of identifying a template. These are typically based on sequence analysis but new methods based on purely structural similarity are also being developed that allow function annotation based on structural relationships that cannot be recognized by sequence. The growing number of available structures of known function, improved homology modeling techniques and new developments in the use of structure allow template-based methods to be applied on a proteome-wide scale and in many different biological contexts. This progress significantly expands the range of applicability of structural information in function annotation to a level that previously was only achievable by sequence comparison. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 06/2015; 32. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsically disordered proteins (IDPs) showcase the importance of conformational plasticity and heterogeneity in protein function. We summarize recent advances that connect information encoded in IDP sequences to their conformational properties and functions. We focus on insights obtained through a combination of atomistic simulations and biophysical measurements that are synthesized into a coherent framework using polymer physics theories. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 06/2015; 32. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammasomes are caspase-1 activating, molecular inflammatory machines that proteolytically mature pro-inflammatory cytokines and induce pyroptotic cell death during innate immune responses. Recent structural studies of proteins that constitute inflammasomes have yielded fresh insights into their assembly mechanisms. In particular, these include a crystal structure of the CARD-containing NOD-like receptor NLRC4, the crystallographic and electron microscopy (EM) studies of the dsDNA sensors AIM2 and IFI16, and of the regulatory protein p202, and the cryo-EM filament structure of the PYD domain of the inflammasome adapter ASC. These data suggest inflammasome assembly that starts with ligand recognition and release of autoinhibition followed by step-wise rounds of nucleated polymerization from the sensors to the adapters, then to caspase-1. In this elegant manner, inflammasomes form by an 'all-or-none' cooperative mechanism, thereby amplifying the activation of caspase-1. The dense network of filamentous structures predicted by this model has been observed in cells as micron-sized puncta. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 04/2015; 31. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of self-assembly research is the synthesis of biomolecular structures with diverse, intricate features across multiple length scales. Designing self-assembly processes becomes more difficult as the number of species or target structure size increases. Just as the ordered assembly of a machine or device makes complex manufacturing possible, ordered (or 'algorithmic') biomolecular self-assembly processes could enable the self-assembly of more complex structures. We discuss the design of ordered assembly processes with particular attention to DNA and RNA. The assembly of complexes can be ordered using selective, multivalent interactions or active components that change shape after assembly. The self-assembly of spatial gradients driven by reaction-diffusion can also be ordered. We conclude by considering topics for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 04/2015; 31. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most membrane-proteins exist in complexes rather than isolated entities. To fully understand their biological function it is essential to study the intact membrane-protein assemblies. The overexpression and purification of many essential membrane-protein complexes is still a considerable and often unsurmountable challenge. In these cases, extraction from source is the only option for many large multi-subunit cellular machines. Here, we describe recent advances in overexpression of multi-subunit membrane-protein complexes, the strategies to stabilize these complexes and highlight major achievements in membrane-protein structural research that were facilitated by the prospect of achieving subnanometer to near-atomic resolution by electron cryo-microscopy. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 04/2015; 32:123-130. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Botulinum neurotoxins (BoNTs) are extremely poisonous protein toxins that cause the fatal paralytic disease botulism. They are naturally produced in bacteria with several nontoxic neurotoxin-associated proteins (NAPs) and together they form a progenitor toxin complex (PTC), the largest bacterial toxin complex known. In foodborne botulism, the PTC functions as a molecular machine that helps BoNT breach the host defense in the gut. Here, we discuss the substantial recent advance in elucidating the atomic structures and assembly of the 14-subunit PTC, including structures of BoNT and four NAPs. These structural studies shed light on the molecular mechanisms by which BoNT is protected against the acidic environment and proteolytic destruction in the gastrointestinal tract, and how it is delivered across the intestinal epithelial barrier. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 04/2015; 31:89-95. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere. Copyright © 2015. Published by Elsevier Ltd.
    Current Opinion in Structural Biology 04/2015; 31:84-88. DOI:10.1016/
  • Current Opinion in Structural Biology 04/2015; DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear magnetic resonance (NMR) spectroscopy is a uniquely powerful tool for studying the structure, dynamics and interactions of biomolecules at atomic resolution. In the past 15 years, the development of new isotopic labeling strategies has opened the possibility of exploiting NMR spectroscopy in the study of supra-molecular complexes with molecular weights of up to 1MDa. At the core of these isotopic labeling developments is the specific introduction of [(1)H,(13)C]-labeled methyl probes into perdeuterated proteins. Here, we describe the evolution of these approaches and discuss their impact on structural and biological studies. The relevant protocols are succinctly reviewed for single and combinatorial isotopic-labeling of methyl-containing residues, and examples of applications on challenging biological systems, including high molecular weight and membrane proteins, are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 04/2015; 32:113-122. DOI:10.1016/
  • Current Opinion in Structural Biology 03/2015; DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: The outer membranes (OM) of Gram-negative bacteria contain a host of β-barrel outer membrane proteins (OMPs) which serve many functions for cell survival and virulence. The biogenesis of these OMPs is mediated by the β-barrel assembly machinery (BAM) complex which is composed of five components including the essential core component called BamA that mediates the insertase function within the OM. The crystal structure of BamA has recently been reported from three different species, including a full-length structure from Neisseria gonorrhoeae. Mutagenesis and functional studies identified several conformational changes within BamA that are required for function, providing a significant advancement towards unraveling exactly how BamA and the BAM complex are able to fold and insert new OMPs in the OM. Copyright © 2015. Published by Elsevier Ltd.
    Current Opinion in Structural Biology 03/2015; 31:35-42. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies of large and heterogeneous macromolecules often yield low-resolution data that alone does not suffice to build accurate atomic models. Adding information from molecular simulation or other structure prediction methods can lead to models with significantly better quality. Different strategies are discussed to combine experimental data with results from simulation and prediction. This review describes recent approaches for building atomic models with a focus on X-ray diffraction and single-particle cryo-electron microscopy (cryo-EM) data. In addition, both cryo-EM and X-ray diffraction provide information on molecular dynamics. Therefore, the best description of molecular structures is often by an ensemble of models. It furthermore becomes apparent that using raw data for the modeling ensures that all information obtained by the experiment can be fully exploited. It is also important to quantify the errors of both experiment and simulation to correctly weigh their different contributions. Copyright © 2015. Published by Elsevier Ltd.
    Current Opinion in Structural Biology 03/2015; 31:20-27. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Revealing the atomistic architecture of supramolecular complexes is a fundamental step toward a deeper understanding of cellular functioning. To date, this formidable task is facilitated by an emerging array of integrative modeling approaches that combine experimental data from different sources. One major challenge these methods have to face is the treatment of the dynamic rearrangements of the individual subunits upon assembly. While this flexibility can be sampled at different levels, integrating native dynamic determinants with available experimental inputs can provide an effective way to reveal the molecular recognition mechanisms at the basis of supramolecular assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 03/2015; 31:28-34. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modular polyketide synthases (PKS) produce a vast array of bioactive molecules that are the basis of many highly valued pharmaceuticals. The biosynthesis of these compounds is based on ordered assembly lines of multi-domain modules, each extending and modifying a specific chain-elongation intermediate before transfer to the next module for further processing. The first 3D structures of a full polyketide synthase module in different functional states were obtained recently by electron cryo-microscopy. The unexpected module architecture revealed a striking evolutionary divergence of the polyketide synthase compared to its metazoan fatty acid synthase homolog, as well as remarkable conformational rearrangements dependent on its biochemical state during the full catalytic cycle. The design and dynamics of the module are highly optimized for both catalysis and fidelity in the construction of complex, biologically active natural products. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Structural Biology 03/2015; 31:9-19. DOI:10.1016/
  • [Show abstract] [Hide abstract]
    ABSTRACT: Why do chaperones need ATP hydrolysis to help proteins reach their native, functional states? In this review, we highlight the most recent experimental and theoretical evidences suggesting that ATP hydrolysis allows molecular chaperones to escape the bounds imposed by equilibrium thermodynamics. We argue here that energy consumption must be fully taken into account to understand the mechanism of these intrinsically non-equilibrium machines and we propose a novel perspective in the way the relation between function and ATP hydrolysis is viewed. Copyright © 2015. Published by Elsevier Ltd.
    Current Opinion in Structural Biology 03/2015; 30:161-169. DOI:10.1016/