Developmental and comparative immunology

Publisher: Elsevier

Journal description

Current impact factor: 2.82

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.815
2013 Impact Factor 3.705
2012 Impact Factor 3.238
2011 Impact Factor 3.268
2010 Impact Factor 3.293
2009 Impact Factor 3.29
2008 Impact Factor 2.833
2007 Impact Factor 3.155
2006 Impact Factor 3.399
2005 Impact Factor 3.261
2004 Impact Factor 2.652
2003 Impact Factor 2.39
2002 Impact Factor 2.186
2001 Impact Factor 2.909
2000 Impact Factor 2.205
1999 Impact Factor 1.857
1998 Impact Factor 1.814
1997 Impact Factor 1.318
1996 Impact Factor 1.596
1995 Impact Factor 1.34
1994 Impact Factor 1.186
1993 Impact Factor 1.177
1992 Impact Factor 1.031

Impact factor over time

Impact factor

Additional details

5-year impact 3.34
Cited half-life 6.20
Immediacy index 0.95
Eigenfactor 0.01
Article influence 0.71
ISSN 1879-0089

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • Conghui Liu · Mengqiang Wang · Shuai Jiang · Lingling Wang · Hao Chen · Zhaoqun Liu · Limei Qiu · Linsheng Song
    [Show abstract] [Hide abstract]
    ABSTRACT: Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation in vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins.
    Developmental and comparative immunology 10/2015; DOI:10.1016/j.dci.2015.09.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.
    Developmental and comparative immunology 10/2015; DOI:10.1016/j.dci.2015.09.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interleukin-17 (IL-17) cytokine family plays a central role in the coordination of inflammatory responses. In fish species, three genes that have a similar homology to both IL-17A and IL-17F were designated IL-17A/F1, 2, and 3. In this study, we identified three IL-17A/F homologues (LycIL-17A/F1, 2, and 3) from large yellow croaker (Larimichthys crocea). The deduced LycIL-17A/F1 and 3 had four cysteine residues conserved in teleost IL-17A/F1 and 3 homologues and shared a domain similar to the B chain of human IL-17F. The deduced LycIL-17A/F2 possessed the unique arrangement of six cysteine residues as teleost IL-17A/F2 (except Fugu IL-17A/F2) and higher vertebrate IL-17A and F, and shared a domain similar to the D/E chain of human IL-17A. Phylogenetic analysis showed that teleost IL-17A/F1 and 3 fall into a major clade, whereas IL-17A/F2 forms a separated clade and is clustered with IL-17N. Based on structural and phylogenetic analyses, we suggest that teleost IL-17A/Fs may be classified into two subgroups: one consisting of IL-17A/F1 and 3, and the other composed of IL-17A/F2. The three LycIL-17A/Fs were constitutively expressed in all tissues examined although at a different level. Following challenge with Aeromonas hydrophila, expression of these three LycIL-17A/Fs was rapidly increased in head kidney and gills. The in vivo assays showed that recombinant LycIL-17A/F1, 2, and 3 all were able to enhance the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α2), chemokines (CXCL8 and CXCL13), and antimicrobial peptide hepcidin in head kidney. Furthermore, LycIL-17A/Fs appeared to mediate pro-inflammatory responses via NF-κB signalling. These results therefore reveal similar functions between the two subgroup members,LycIL-17A/F1 and 3 and LycIL-17A/F2, in promoting inflammation and host defences.
    Developmental and comparative immunology 10/2015; DOI:10.1016/j.dci.2015.09.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: The noa gene is an essential gene encoding a very long chain fatty acid elongase. In this study, we cloned the noa gene of Bactrocera dorsalis, which encodes a protein sharing 84.50% identity to the NOA in Drosophila melanogaster. The expression profiles indicated that the transcriptional level of noa was high at the egg stage and in the testis tissue. The results showed that noa expression was up-regulated after Listeria monocytogenes, Staphylococcus aureus and Escherichia coli infection. Silencing of noa would influence the expression of immune related genes, including MyD88 and defensin in the Toll pathway and relish and diptericin in the Imd pathway. Moreover, infection with L. monocytogenes and S. aureus after feeding ds-noa, the expression of MyD88 and defensin down-regulated significantly in ds-noa group compared with in ds-egfp group, indicating that noa interference influenced the activation of the Toll pathway. Meanwhile, infection with L. monocytogenes and E. coli, which activated the Imd pathway, do not cause increase of the mRNA levels of relish and diptericin in ds-noa group as severely as in ds-egfp treatment, indicating that the Imd pathway was also repressed after silences of noa.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.09.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adaptive immunity in vertebrates can confer increased resistance against invading pathogens upon re-infection. But how specific parasite genotypes affect the temporal transition from innate to adaptive immunity under continual exposure to parasites is poorly understood. Here, we investigated the effects of homologous and heterologous exposures of genetically distinct parasite lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns of adaptive immunity in sticklebacks (Gasterosteus aculeatus). Observable differences in gene expression were largely attributable to final exposures while there was no transcription pattern characteristic for a general response to repeated infections with D. pseudospathaceum. None of the final exposure treatments was able to erase the distinct expression patterns resulting from a heterologous pre-exposed fish. Interestingly, heterologous final exposures showed similarities between different treatment groups subjected to homologous pre-exposure. The observed pattern was supported by parasite infection rates and suggests that host immunization was optimized towards an adaptive immune response that favored effectiveness against parasite diversity over specificity.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.09.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has demonstrated that leucine-rich repeat (LRR)-only proteins could mediate protein-ligand and protein-protein interactions and be involved in the immune response. In the present study, an LRR-only protein (designed as CfLRRop-1) was cloned from Zhikong scallop Chlamys farreri. The complete cDNA sequence of CfLRRop-1 contained an open reading frame (ORF) of 1377 bp, which encoded a protein of 458 amino acids. An LRRNT motif, an LRR_7 motif and seven LRR motifs were found in the deduced amino acid sequence of CfLRRop-1. And these seven LRR motifs contained a conserved signature sequence LxxLxLxxNxL. The mRNA transcripts of CfLRRop-1 were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas and gonad, with the highest expression level in hepatopancreas. After the stimulation of lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly I:C), the mRNA transcripts of CfLRRop-1 in haemocytes all increased firstly within the first 6 h and secondly during 12-24 h post stimulation. The mRNA expression level of CfLRRop-1 was continuously up-regulated, after the expression of CfTLR (previously identified Toll-like receptor in C. farreri) was suppressed via RNA interference (RNAi). The recombinant CfLRRop-1 protein could directly bind LPS, PGN, GLU and poly I:C, and induce the release of TNF-α in mixed primary cultured scallop haemocytes. These results collectively indicated that CfLRRop-1 would function as a powerful pattern recognition receptor (PRR) and play a pivotal role in the immune response of scallops.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.09.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular immunity is accompanied by hemocyte-spreading behavior, which undergoes cytoskeletal rearrangement. Polydnaviral factor CpBV-CrV1 can inhibit the hemocyte-spreading behavior and suppress host immune response of Plutella xylostella. However, host target molecule of CpBV-CrV1 that inhibits the hemocyte behavior has not been identified yet. This study used a pull-down approach to identify the target molecule of CpBV-CrV1. A protein bound to CpBV-CrV1 was co-precipitated and identified to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by LC-MS/MS analysis. RNA interference (RNAi) specific to GAPDH of P. xylostella was found to be able to inhibit the hemocyte-spreading behavior, while RNAi treatments with other glycolytic genes had no effect on the spreading behavior. An addition of recombinant CpBV-CrV1 on hemocyte monolayer interrupted the association between GAPDH and α-tubulin in the cytoplasm. Overlay of mutant proteins (Y492A or Y501A with tyrosine to alanine at putative GAPDH-binding site) of CpBV-CrV1 on hemocyte monolayer revealed that they could enter hemocytes unlike a mutant in the N-terminal coiled-coil domain. However, they failed to inhibit the hemocyte-spreading behavior without any binding affinity to GAPDH. These results suggest that GAPDH plays a critical role in hemocyte-spreading behavior during immune challenge as a molecular target of viral factor CpBV-CrV1.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.09.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor kappa B (NF-κB) transcription factors are related to several physiological processes, including innate and acquired immunity. In this study, a novel negative regulator of the Nemo-like kinase (NLK) gene was identified from Apostichopus japonicus through PCR (denoted as AjNLK). The complete AjNLK cDNA was of 2335 bp, with a 5'-UTR of 315 bp, a 3'-UTR of 718 bp, and a putative ORF of 1302 bp, and encoded a polypeptide of 433 amino acid residues with a typical serine/threonine protein kinase domain. Blast analysis revealed that AjNLK shared a high degree of structural conservation with its counterparts from other invertebrates and vertebrates. Spatial expression analysis indicated that the expression of AjNLK mRNA transcripts was higher in the tentacles than that in coelomocytes. The expression of AjNLK mRNA in coelomocytes was suppressed after Vibrio splendidus challenge by 0.51-fold and 0.41-fold at 72 and 96 h, respectively, compared with that in the control group. Similarly, AjNLK expression was down-regulated in primary coelomocytes exposed to 1 μg mL(-1) lipopolysaccharide (LPS). Functional investigation further revealed that the NF-κB factor p105 was induced at both mRNA and protein levels after AjNLK silencing in vitro. Meanwhile, the apoptosis of LPS-induced coelomocytes was significantly inhibited in AjNLK siRNA-transfected coelomocytes. These results supported that AjNLK negatively regulated NF-κB activation and cell apoptosis in sea cucumber.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.09.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the widespread use of the current Bacillus Calmette-Guérin (BCG) vaccine, tuberculosis is still a major cause of morbidity and mortality worldwide. Vaccination with BCG does not prevent a Mycobacterium tuberculosis infection, nor does it inhibit the reactivation of latent tuberculosis. Here, we show that adult zebrafish are modestly and variably protected from a mycobacterial infection by BCG vaccination. An intraperitoneal (i.p.) BCG vaccination was associated with enhanced survival upon a high-dose (20,000 bacteria) Mycobacterium marinum infection. In addition, BCG-vaccinated fish were more able to restrict a low-dose (30 bacteria) intraperitoneal infection with M. marinum, as indicated by lower bacterial loads at six weeks post infection (wpi). However, the vaccination could not completely prevent an infection. A qRT-PCR analysis comparing BCG-vaccinated and unvaccinated fish upon a mycobacterial infection indicated that the induction of Tumor necrosis factor (TNF) was more modest in vaccinated fish. The partial protection gained by BCG could be boosted by a DNA vaccine combining Ag85B, ESAT6 and a resuscitation-related gene RpfE, suggesting that this combination of antigens could be useful for a future BCG booster vaccine. We conclude that zebrafish is a useful early-phase preclinical model for studying subunit vaccines designed for boosting the effects of BCG.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.09.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C1q domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain at their C-terminus. These proteins are involved in various processes in vertebrates and are assumed to serve as important pattern recognition receptors in innate immunity in invertebrates. Here, a novel C1qDC protein from Lethenteron camtschaticum was identified and characterized (designated as L-C1qDC-1). After a partial cDNA sequence of L-C1qDC-1 was identified in a L.camtschaticum liver cDNA library, the full-length cDNA was obtained using 3'- and 5'-rapid amplification of cDNA ends (RACE). L-C1qDC-1 encodes 236 amino acids and contains a signal peptide, a collagen-like sequence with Gly-Xaa-Yaa repeats, and a C-terminal gC1q domain. The L-C1qDC-1 protein was primarily distributed in the gut, liver and supraneural body of L.camtschaticum and was also marginally detectable in leukocytes via real-time PCR and immunofluorescence assays. Furthermore, both immunoprecipitation and immunofluorescence results showed that in L. camtschaticum serum, L-C1qDC-1 could interact with variable lymphocyte receptor (VLR) B and displayed strong colocalization with cancer cell immune responses. These results indicated that the L-C1qDC-1 gene encodes a novel C1qDC protein that may play an important role in the immune responses of L.camtschaticum, providing clues for understanding the universal functions of C1qDC proteins in other species and suggesting that these proteins could serve as pattern recognition molecules in immunotherapy.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.08.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Yellow head virus (YHV) causes acute infections and mass mortality in black tiger shrimp culture. Our study aims to investigate molecular interaction between YHV and circulating hemocytes of Penaeus monodon at early infection. Total shrimp hemocytes were isolated by Percoll gradient centrifugation and identified by flow cytometric analysis. At least three types of hemocyte cells were identified as hyaline, semi-granular, and granular hemocytes. Experimental infection of YHV in shrimp culture demonstrated drastic changes in total and each hemocyte cell counts. Immunohistochemistry analysis demonstrated interaction and replication of YHV mainly with the granule-containing hemocytes and little to none in hyaline cell. These granule-containing hemocytes are proposed to be YHV targets providing the first line of defense to viral infection. Protein expression profiling of granule-containing hemocytes revealed several immune-responsive proteins including antimicrobial protein crustins (crustinPm1 and crustinPm4), alpha-2-macroglobulin, and kazal-type serine proteinase inhibitor. During an early phase of YHV infection at 6 hpi crustinPm1 illustrated a significant increase of mRNA and protein expression level in plasma. The results suggest that an antimicrobial crustinPm1 may participate in shrimp defense mechanism against YHV, especially on the granule-containing hemocytes.
    Developmental and comparative immunology 09/2015; DOI:10.1016/j.dci.2015.09.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rac1, a Rho GTPase, serves critical immunological functions in mammals. Here, a Rac1 homolog (gcRac1) was identified in grass carp (Ctenopharyngodon idella). The full-length 2023-base pair gcRac1 cDNA contained a 579-bp open reading frame encoding a 192-residue protein, including a conserved RHO domain and nuclear localization signal. The gcRac1 protein shares high identity with other Rac1 counterparts and phylogenetically clustered with Danio rerio Rac1. The gcRac1 transcript showed wide tissue distribution and was inducible by Aeromonas hydrophila in vivo and in vitro; its expression also fluctuated with LPS or flagellin stimulation in vitro. With gcRac1 over-expression, gcPAK1, gcIL1-β, gcTNF-α and gcIFN were basically up-regulated by A. hydrophila and bacterial PAMPs induction, while gcRac1 knockdown decreased these transcripts after A. hydrophila challenge. Over-expression of gcRac1 reduced, while its suppression facilitated, bacterial invasion. Moreover, gcRac1 could activate NF-κB signaling. These findings implicate the vital role of gcRac1 in grass carp innate immunity. Copyright © 2015. Published by Elsevier Ltd.
    Developmental and comparative immunology 08/2015; 54(1). DOI:10.1016/j.dci.2015.08.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: LBP/BPIs are pattern recognition receptors that are often present in vertebrates and in invertebrates, and they play a defense role against pathogens. We have identified 1698 bp cDNA sequence from the E. andrei earthworm with predicted amino acid sequence that shares homology with the LBP/BPI family (EaLBP/BPI). Sequence analysis of EaLBP/BPI proved the existence of two conserved domains with the potential ability to bind LPS. The predicted molecular mass of the EaLBP/BPI protein is 53.5 kDa, and its high basicity (pI 9.8) is caused by its high arginine content. Constitutive transcription of the Ealbp/bpi gene was shown in all tested tissues, with the highest level in coelomocytes and seminal vesicles; the lowest level was detected in the intestine. On the contrary, another earthworm LPS-binding molecule CCF (coelomic cytolytic factor) was expressed only in the intestine and coelomocytes. In E. andrei coelomocytes, the transcription of Ealbp/bpi gene was up-regulated in response to bacterial stimulation, reaching a maximum at 8 and 16 h post stimulation with B. subtilis and E. coli, respectively. Copyright © 2015. Published by Elsevier Ltd.
    Developmental and comparative immunology 08/2015; 54(1). DOI:10.1016/j.dci.2015.08.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urodele amphibians are an interesting model because although they possess the cardinal elements of the vertebrate immune system, their immune response is apparently subdued. This phenomenon, sometimes regarded as a state of immunodeficiency, has been attributed by some authors to limited antibody diversity. We reinvestigated this issue in Pleurodeles waltl, a metamorphosing urodele, and noted that upsilon transcripts of its IgY repertoire were as diverse as alpha transcripts of the mammalian IgA repertoire. Mu transcripts encoding the IgM repertoire were less diverse, but could confer more plasticity. Both isotypes present potential polyreactive features that may confer urodele antibodies with the ability to bind to a variety of antigens. Finally, we observed additional cysteines in CDR1 and 2 of the IGHV5 and IGHV6 domains, some of which specific to urodeles, that could allow the establishment of a disulfide bond between these CDRs. Together, these data suggest that urodele antibody diversity is not as low as previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Developmental and comparative immunology 08/2015; 53(2):371-384. DOI:10.1016/j.dci.2015.08.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomphalaria glabrata acts as the intermediate host to the parasite, Schistosoma mansoni, and for this reason, the immune system of B. glabrata has been researched extensively. Several studies have demonstrated that the transcriptome profile of B. glabrata changes following exposure to a variety of pathogens, yet very little is known regarding the regulation of gene expression in this species. Nuclear factor kappaB (NF-κB) homologues have recently been identified in B. glabrata but few functional studies have been carried out on this family of transcription factors. The aims of this study therefore were to identify NF-κB binding sites (κB motifs) in B. glabrata and examine them via functional assays. Two different κB motifs were predicted. Furthermore, the Rel homology domain (RHD) of a B. glabrata NF-κB was able to bind these κB motifs in EMSAs, as well as a vertebrate κB motif. Copyright © 2015. Published by Elsevier Ltd.
    Developmental and comparative immunology 08/2015; 53(2). DOI:10.1016/j.dci.2015.08.004