Hearing research

Publisher: Elsevier

Current impact factor: 2.97

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.968
2013 Impact Factor 2.848
2012 Impact Factor 2.537
2011 Impact Factor 2.696
2010 Impact Factor 2.428
2009 Impact Factor 2.177
2008 Impact Factor 2.333
2007 Impact Factor 2.062
2006 Impact Factor 1.584
2005 Impact Factor 1.674
2004 Impact Factor 1.578
2003 Impact Factor 1.502
2002 Impact Factor 1.969
2001 Impact Factor 1.586
2000 Impact Factor 1.753
1999 Impact Factor 1.804
1998 Impact Factor 1.598
1997 Impact Factor 1.915
1996 Impact Factor 1.641
1995 Impact Factor 1.908
1994 Impact Factor 1.744
1993 Impact Factor 1.853
1992 Impact Factor 1.792

Impact factor over time

Impact factor

Additional details

5-year impact 3.14
Cited half-life >10.0
Immediacy index 1.24
Eigenfactor 0.01
Article influence 1.07
ISSN 1878-5891

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: To recognize speech in a noisy auditory scene, listeners need to perceptually segregate the target talker's voice from other competing sounds (stream segregation). A number of studies have suggested that the attentional demands placed on listeners increase as the acoustic properties and informational content of the competing sounds become more similar to that of the target voice. Hence we would expect attentional demands to be considerably greater when speech is masked by speech than when it is masked by steady-state noise. To investigate the role of attentional mechanisms in the unmasking of speech sounds, event-related potentials (ERPs) were recorded to a syllable masked by noise or competing speech under both active (the participant was asked to respond when the syllable was presented) or passive (no response was required) listening conditions. The results showed that the long-latency auditory response to a syllable (/bi/), presented at different signal-to-masker ratios (SMRs), was similar in both passive and active listening conditions, when the masker was a steady-state noise. In contrast, a switch from the passive listening condition to the active one, when the masker was two-talker speech, significantly enhanced the ERPs to the syllable. These results support the hypothesis that the need to engage attentional mechanisms in aid of scene analysis increases as the similarity (both acoustic and informational) between the target speech and the competing background sounds increases.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.11.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.10.017
  • [Show abstract] [Hide abstract]
    ABSTRACT: Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.09.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brief deviations of interaural correlation (IAC) can provide valuable cues for detection, segregation and localization of acoustic signals. This study investigated the processing of such "binaural gaps" in continuously running noise (100-2000 Hz), in comparison to silent "monaural gaps", by measuring late auditory evoked potentials (LAEPs) and perceptual thresholds with novel, iteratively optimized stimuli. Mean perceptual binaural gap duration thresholds exhibited a major asymmetry: they were substantially shorter for uncorrelated gaps in correlated and anticorrelated reference noise (1.75 ms and 4.1 ms) than for correlated and anticorrelated gaps in uncorrelated reference noise (26.5 ms and 39.0 ms). The thresholds also showed a minor asymmetry: they were shorter in the positive than in the negative IAC range. The mean behavioral threshold for monaural gaps was 5.5 ms. For all five gap types, the amplitude of LAEP components N1 and P2 increased linearly with the logarithm of gap duration. While perceptual and electrophysiological thresholds matched for monaural gaps, LAEP thresholds were about twice as long as perceptual thresholds for uncorrelated gaps, but half as long for correlated and anticorrelated gaps. Nevertheless, LAEP thresholds showed the same asymmetries as perceptual thresholds. For gap durations below 30 ms, LAEPs were dominated by the processing of the leading edge of a gap. For longer gap durations, in contrast, both the leading and the lagging edge of a gap contributed to the evoked response. Formulae for the equivalent rectangular duration (ERD) of the binaural system's temporal window were derived for three common window shapes. The psychophysical ERD was 68 ms for diotic and about 40 ms for anti- and uncorrelated noise. After a nonlinear Z-transform of the stimulus IAC prior to temporal integration, ERDs were about 10 ms for reference correlations of ±1 and 80 ms for uncorrelated reference. Hence, a physiologically motivated peripheral nonlinearity changed the rank order of ERDs across experimental conditions in a plausible manner.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.10.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many neurons in the central auditory system of a number of species have been found to be sensitive to the duration of sound stimuli. While previous studies have shown that γ-aminobutyric acid (GABA)-ergic inhibitory input is important for duration sensitivity in the inferior colliculus (IC), it is still unknown whether (GABA)-ergic inhibitory input plays an important role in generating duration sensitivity in the cortex. Using free-field sound stimulation and in vivo extracellular recording, we investigated duration sensitivity in primary auditory cortical (AI) neurons of the Nembutal anesthetized albino mouse (Mus musculus, Km) and examined the effect of the GABAA receptor antagonist bicuculline on AI neuron duration sensitivity. A total of 63 duration tuning curves were measured in AI neurons. Of these, 44% (28/63) exhibited duration sensitive responses, while 43% (27/63) lacked duration sensitivity. The remaining 13% (8/63) exhibited long-pass properties likely reflecting both duration sensitive and insensitive features. We found that duration sensitive neurons had shorter first spike latency (FSL) and longer firing duration (FD) when stimulated with best duration (p<0.05), while duration insensitive neurons had invariable FSL and FD at different sound durations (p>0.05). Furthermore, 60% (6/10) of duration sensitive neurons and 75% (3/4) long-pass neurons lost duration sensitivity following bicuculline application. Taken together, our results show that cortical neurons in the albino mouse are sensitive to sound duration, and that GABAergic inhibition may play an important role in the formation of de novo duration sensitivity in AI. The possible mechanism and behavioral significance of duration sensitivity in AI neurons is discussed.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.10.018
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To define the profiles of ocular and cervical vestibular-evoked myogenic potentials (oVEMP and cVEMP, respectively) in patients with profound sensorineural hearing loss (PSHL). Methods: Twenty-nine patients with PSHL and 20 healthy volunteers were investigated. The patients' medical records were collected and analyzed. The ACS-evoked oVEMPs and cVEMPs and caloric test were tested and analyzed. Results: The oVEMP and cVEMP response rates in the patients with PSHL were 38.9% and 44.4%, respectively, and these values were significantly less than those in the healthy volunteers (both were 100%). Regarding the oVEMPs, significantly higher threshold (p < 0.001) and smaller amplitude (p = 0.022) were observed in the patients. Regarding the cVEMPs, a significant elevation in the threshold (p < 0.001) and a decrease in the amplitude (p = 0.024) were observed, and marked reductions in the P1 (p = 0.002) and N1 latencies (p = 0.001) were observed in the patients. Regarding the caloric test, the ratio of semicircular canal dysfunction in patients with PSHL was significantly higher than that in healthy volunteers (p < 0.001). However, neither the patients nor the doctors noticed balance problems or the loss of otolithic function in the summaries of the medical records of all 29 of the patients. Conclusion: The utricular and saccular dysfunction that can be concealed in patients with PSHL can be observed in oVEMPs and cVEMPs. Otolithic function should receive attention in the diagnosis and treatment of PSHL. VEMPs have special value for the observation of hidden dysfunctions of the otolithic organs of patients with PSHL.
    Hearing research 11/2015; 331. DOI:10.1016/j.heares.2015.10.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the processing of target-distance information, delay-tuned auditory neurons of the mustached bat show facilitative responses to a combination of signal elements of a biosonar pulse-echo pair with a specific echo delay. They are initially produced in the inferior colliculus by facilitative responses based on the coincidence of the rebound response following glycinergic inhibition to the first harmonic of the pulse and a short-latency response to the 2nd-4th harmonics of its echo. Here, we report that further facilitative responses to pulse-echo pairs of thalamic delay-tuned neurons are mediated by glutamate receptors (NMDA and non-NMDA receptors), and that GABAergic inhibition shortens the duration of facilitative responses mediated by NMDA-receptors, without changing the delay tuning of thalamic delay-tuned neurons. Different from collicular delay-tuned neurons, thalamic ones respond much more to pulse-echo pairs than individual signal elements. The neural mechanisms involved in shaping thalamic delay-tuning support a model of hierarchical signal processing in the auditory system.
    Hearing research 11/2015; 331. DOI:10.1016/j.heares.2015.10.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or motivational manipulation, but its sensitivity, reliability, mechanism, and optimal implementation are incompletely understood. While to date animal models have significantly expanded the neuroscience of tinnitus, they have been limited to examining sensory features. In the human condition, emotional and cognitive factors are also important. It is not clear that the emotional features of tinnitus can be further understood using animal models, but models may be applied to examine cognitive factors. A recently developed model is described that reveals an interaction between tinnitus and auditory attention. This research suggests that effective tinnitus therapy could rely on modifying attention to the sensation rather than modifying the sensation itself.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.10.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous RNA-sequencing analysis of the rat cochlear genes identified multiple biological processes and molecular pathways in the cochlear response to acoustic overstimulation. However, the biological processes and molecular pathways that are common to other species have not been documented. The identification of these common stress processes is pivotal for a better understanding of the essential response of the cochlea to acoustic injury. Here, we compared the RNA-sequencing data collected from mice and rats that sustained a similar, but not identical, acoustic injury. The transcriptome analysis of cochlear genes identified the differentially expressed genes in the mouse and rat samples. Bioinformatics analysis revealed a marked similarity in the changes in the biological processes between the two species, although the differentially expressed genes did not overlap well. The common processes associated with the differentially expressed genes are primarily associated with immunity and inflammation, which include the immune response, response to wounding, the defense response, chemotaxis and inflammatory responses. Moreover, analysis of the molecular pathways showed considerable overlap between the two species. The common pathways include cytokine-cytokine receptor interactions, the chemokine signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. Further analysis of the transcriptional regulators revealed common upstream regulators of the differentially expressed genes, and these upstream regulators are also functionally related to the immune and inflammatory responses. These results suggest that the immune and inflammatory responses are the essential responses to acoustic overstimulation in the cochlea.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.10.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, there has been increasing use of the gap detection reflex test to demonstrate induction of tinnitus in animals. Animals with tinnitus show weakened gap detection ability for background noise that matches the pitch of the tinnitus. The usual explanation is that the tinnitus 'fills in the gap'. It has recently been shown, however, that tinnitus is commonly associated with hyperacusis-like enhancements of the acoustic startle response, a change which might potentially alter responses in the gap detection test. We hypothesized that such enhancements could lead to an apparent reduction of gap suppression, resembling that caused by tinnitus, by altering responses to the startle stimulus or the background noise. To test this hypothesis, we compared gap detection abilities in 3 subsets of noise-exposed animals with those in unexposed controls. The results showed that exposed animals demonstrated altered gap detection abilities, but these alterations were sometimes explained as consequences of hyper-responsiveness to either the startle stimulus or to the background noise. Two of the three subsets of animals studied, however, displayed weakened gap detection abilities that could not be explained by enhanced responses to these stimuli or by reduced sound sensitivity or a reduction of temporal processing speed, consistent with the induction of tinnitus. These results demonstrate that not only hearing loss but also changes in sensitivity to background noise or to startle stimuli are potential confounds that, when present, can underlie changes in gap detection irrespective of tinnitus. We discuss how such confounds can be recognized and how they can be avoided.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.10.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tinnitus is a perception of sound that can occur in the absence of an external stimulus. A brief review of electroencephalography (EEG) and magnetoencephalography (MEG) literature demonstrates that there is no clear relationship between tinnitus presence and frequency band power in whole scalp or source oscillatory activity. Yet a preconception persists that such a relationship exists and that resting state EEG could be utilised as an outcome measure for clinical trials of tinnitus interventions, e.g. as a neurophysiological marker of therapeutic benefit. To address this issue, we first examined the test-retest correlation of EEG band power measures in tinnitus patients (n = 42). Second we examined the evidence for a parametric relationship between numerous commonly used tinnitus variables (psychoacoustic and psychosocial) and whole scalp EEG power spectra, directly and after applying factor reduction techniques. Test-retest correlation for both EEG band power measures and tinnitus variables were high. Yet we found no relationship between whole scalp EEG band powers and psychoacoustic or psychosocial variables. We conclude from these data that resting state whole scalp EEG should not be used as a biomarker for tinnitus and that greater caution should be exercised in regard to reporting of findings to avoid confirmation bias. The data was collected during a randomised controlled trial registered at ClinicalTrials.gov (Identifier: NCT01541969).
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.11.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fischer Brown Norway (FBN) rats (n=233) were unilaterally exposed to 12 different combinations of noise intensity, duration, and spectrum, while 46 rats served as sham-exposed controls. Rats were behaviorally tested for tinnitus and hyperacusis using gap-induced inhibition of the acoustic startle reflex (Gap) and prepulse inhibition (PPI) using 60-dB SPL before noise-exposure and at regular intervals for 12 mo. 12-mo after noise exposure the middle-aged rats were then tested again for tinnitus and hyperacusis before collecting Auditory Brainstem Response (ABR) thresholds. Collapsing across all noise exposure conditions a significant tinnitus-like deficit in responding to silent gaps was observed, with the most likely tinnitus pitch around 16 kHz. Rates of tinnitus 12-mo after noise exposure were greatest in groups receiving the four least intense noise doses (110-dB for 30, 60 and 120 mins, and 116-dB for 30 min), while some of the greatest rates of hyperacusis occurred in groups receiving more intense or longer exposures. The results suggest that rates for developing tinnitus in animal models may not be easily predicted based upon noise exposure dose, but that low-to-moderate noise exposures may result in the greatest likelihood for producing tinnitus.
    Hearing research 11/2015; DOI:10.1016/j.heares.2015.11.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.
    Hearing research 10/2015; 331. DOI:10.1016/j.heares.2015.09.017
  • [Show abstract] [Hide abstract]
    ABSTRACT: Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency end of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism.
    Hearing research 10/2015; 331. DOI:10.1016/j.heares.2015.10.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: The multi-channel cochlear implant (CI) provides sound and speech perception to thousands of individuals who would otherwise be deaf. Broad activation of auditory nerve fibres when using a CI results in poor frequency discrimination. The CI also provides users with poor amplitude perception due to elicitation of a narrow dynamic range. Provision of more discrete frequency perception and a greater control over amplitude may allow users to better distinguish speech in noise and to segregate sound sources. In this research, thin-film (TF) high density micro-electrode arrays and conventional platinum ring electrode arrays were used to stimulate the cochlea of rats administered sensorineural hearing loss (SNHL) via ototoxic insult, with neural responses taken at 434 multiunit clusters in the central nucleus of the inferior colliculus (CIC). Threshold, dynamic range and broadness of response were used to compare electrode arrays. A stronger current was required to elicit CIC threshold when using the TF array compared to the platinum ring electrode array. TF stimulation also elicited a narrower dynamic range than the PR counterpart. However, monopolar stimulation using the TF array produced more localised CIC responses than other stimulation strategies. These results suggest that individuals with SNHL could benefit from micro stimulation of the cochlea using a monopolar configuration which may provide discrete frequency perception when using TF electrode arrays.
    Hearing research 10/2015; 331. DOI:10.1016/j.heares.2015.10.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: People with sensorineural hearing loss generally suffer from a reduced ability to understand speech in complex acoustic listening situations, particularly when background noise is present. In addition to the loss of audibility, a mixture of suprathreshold processing deficits is possibly involved, like altered basilar membrane compression and related changes, as well as a reduced ability of temporal coding. A series of 6 monaural psychoacoustic experiments at 0.5, 2, and 6 kHz was conducted with 18 subjects, divided equally into groups of young normalhearing, older normal-hearing and older hearing-impaired listeners, aiming at disentangling the effects of age and hearing loss on psychoacoustic performance in noise. Random frequency modulation detection thresholds (RFMDTs) with a low-rate modulator in wide-band noise, and discrimination of a phase-jittered Schroeder-phase from a random-phase harmonic tone complex are suggested to characterize the individual ability of temporal processing. The outcome was compared to thresholds of pure tones and narrow-band noise, categorical loudness growth, auditory filter bandwidth, and tone-in-noise detection thresholds. At 500 Hz, results suggest a contribution of temporal fine structure (TFS) to pure-tones signal detection. Significant correlation with auditory thresholds and filter bandwidths indicated an impact of frequency selectivity on TFS usability in wide-band noise. When controlling for the effects of threshold sensitivity, the listener's age significantly correlated with tone-in-noise detection and RFMDTs in noise at 500 Hz, showing that elderly listeners were particularly affected by background noise at low carrier frequencies.
    Hearing research 10/2015; 331. DOI:10.1016/j.heares.2015.10.004