Progress in Neuro-Psychopharmacology and Biological Psychiatry (PROG NEURO-PSYCHOPH)

Publisher: Elsevier

Journal description

Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary research, review and news journal. One of its main aims is to assure rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Another important aim of the journal is to supply pertinent information, provided by national and international bodies, that contributes to progress in the scientific and professional fields. Finally, the journal intends to foster and encourage communications between members of the communities of neuro-psychopharmacology and biological psychiatry.

Current impact factor: 3.69

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.689
2013 Impact Factor 4.025
2012 Impact Factor 3.552
2011 Impact Factor 3.247
2010 Impact Factor 2.877
2009 Impact Factor 2.823
2008 Impact Factor 2.638
2007 Impact Factor 2.802
2006 Impact Factor 2.584
2005 Impact Factor 2.769
2004 Impact Factor 2.149
2003 Impact Factor 1.827
2002 Impact Factor 1.433
2001 Impact Factor 1.058
2000 Impact Factor 1.078
1999 Impact Factor 1.389
1998 Impact Factor 1.114
1997 Impact Factor 0.819

Impact factor over time

Impact factor

Additional details

5-year impact 3.80
Cited half-life 5.90
Immediacy index 1.34
Eigenfactor 0.02
Article influence 1.00
Website Progress in Neuro-Psychopharmacology and Biological Psychiatry website
Other titles Progress in neuro-psychopharmacology & biological psychiatry (Online), Progress in neuro psychopharmacology and biological psychiatry
ISSN 1878-4216
OCLC 39196483
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Interstitial neurons are located among white matter tracts of the human and rodent brain. Post-mortem studies have identified increased interstitial white matter neuron (IWMN) density in the fibre tracts below the cortex in people with schizophrenia. The current study assesses IWMN pathology in a model of maternal immune activation (MIA); a risk factor for schizophrenia. Experimental MIA was produced by an injection of polyinosinic:polycytidylic acid (polyI:C) into pregnant rats on gestational day (GD) 10 or GD19. A separate control group received saline injections. The density of neuronal nuclear antigen (NeuN(+)) and somatostatin (SST(+)) IWMNs was determined in the white matter of the corpus callosum in two rostrocaudally adjacent areas in the 12week old offspring of GD10 (n=10) or GD19 polyI:C dams (n=18) compared to controls (n=20). NeuN(+) IWMN density trended to be higher in offspring from dams exposed to polyI:C at GD19, but not GD10. A subpopulation of these NeuN(+) IWMNs was shown to express SST. PolyI:C treatment of dams induced a significant increase in the density of SST(+) IWMNs in the offspring when delivered at both gestational stages with more regionally widespread effects observed at GD19. A positive correlation was observed between NeuN and SST(+) IWMN density in animals exposed to polyI:C at GD19, but not controls. This is the first study to show that MIA increases IWMN density in adult offspring in a similar manner to that seen in the brain in schizophrenia. This suggests the MIA model will be useful in future studies aimed at probing the relationship between IWMNs and schizophrenia.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.09.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early life experiences play a key role in brain function and behaviour. Adverse events during childhood are therefore a risk factor for psychiatric disease during adulthood, such as mood disorders. Maternal separation is a validated mouse model for maternal neglect, producing negative early life experiences that result in subsequent emotional alteration. Mood disorders have been found to be associated with neurochemical changes and neurotransmitter deficits such as reduced availability of monoamines in discrete brain areas. Emotional alterations like depression result in reduced serotonin availability and enhanced kynurenine metabolism through the action of indoleamine 2, 3-dioxygenase in response to neuroinflammatory factors. This mechanism involves regulation of the neurotransmitter system by neuroinflammatory agents, linking mood regulation to neuroinmunological reactions. In this context, the aim of this study was to investigate the effects of maternal separation with early weaning on emotional behaviour in mice. We investigated neuroinflammatory responses and the state of the tryptophan-kynurenine metabolic pathway in discrete brain areas following maternal separation. We show that adverse events during early life increase risk of long-lasting emotional alterations during adolescence and adulthood. These emotional alterations are particularly severe in females. Behavioural impairments were associated with microglia activation and disturbed tryptophan-kynurenine metabolism in brain areas related to emotional control. This finding supports the preeminent role of neuroinflammation in emotional disorders.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.09.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) and borderline personality Disorder (BPD) show substantial overlap in both affective symptom expression and in regional brain volume reduction. To address the specificity of structural brain change for the respective diagnostic category, we investigated structural networks in MDD and BPD to identify shared and distinct patterns of abnormal brain volume associated with these phenotypically related disorders. Using magnetic resonance imaging at 3T, we studied 22 females with MDD, 17 females with BPD and without comorbid posttraumatic stress disorder, and 22 age-matched female healthy controls. We used "source-based morphometry" (SBM) to investigate naturally grouping patterns of gray matter volume variation (i.e. "structural networks") and the magnitude of their expression between groups. SBM identified three distinct structural networks which showed a significant group effect (p<0.05, FDR-corrected). An anterior frontal and striatal network showed reduced volume in MDD compared to both controls and BPD patients. A medial temporal/medial frontal structural network was found to be significantly reduced in BPD compared to both controls and MDD patients. Decreased cingulate and lateral prefrontal volume was found in both MDD and BPD when compared to healthy individuals. In MDD significant relationships were found between depressive symptoms and a cingulate/lateral prefrontal structural pattern. In contrast, overall BPD symptoms and impulsivity scores were significantly associated with medial temporal/medial frontal network volume. The data suggest both distinct and common patterns of abnormal brain volume in MDD and BPD. Alterations of distinct structural networks differentially modulate clinical symptom expression in these disorders. Response to Reviewers: We are grateful.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.09.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several studies have described a dose-dependent effect of alcohol on human health with light to moderate drinkers having a lower risk of all-cause mortality than abstainers, while heavy drinkers are at the highest risk. In the case of the immune system, moderate alcohol consumption is associated with reduced inflammation and improved responses to vaccination, while chronic heavy drinking is associated with a decreased frequency of lymphocytes and increased risk of both bacterial and viral infections. However, the mechanisms by which alcohol exerts a dose-dependent effect on the immune system remain poorly understood due to a lack of systematic studies that examine the effect of multiple doses and different time courses. This review will summarize our current understanding of the impact of moderate versus excessive alcohol consumption on the innate and adaptive branches of the immune system derived from both in vitro as well as in vivo studies carried out in humans and animal model studies.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.09.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Depression is a serious and potentially life-threatening mental disorder with unknown etiology. Emerging evidence shows that brain-derived neurotrophic factor (BDNF) and microRNAs (miRNAs) play critical roles in the etiology of depression. However, the molecular mechanisms are not fully understood. Expression of miR-182 and BDNF in the hippocampus were analyzed in a chronic unpredictable mild stress (CUMS) model. Male Wistar rats received bilateral intra-hippocampal infusions of BDNF- and miR-182-expressing (miR-182) or miR-182-silencers (si-miR-182) lentiviral vectors (LV). miR-182 upregulation was correlated with decreased BDNF expression in the hippocampus of a CUMS model. Accordingly, an anti-depressant like effect was observed when LV-BDNF or LV-si-miR-182 was injected into the hippocampus. Moreover, BDNF and its target gene cyclic AMP responsive element binding protein 1 (CREB1) decreased following LV-miR-182 injection and increased upon LV-si-miR-182 injection in rat hippocampus and cultured neuronal cells. In contrast, miR-182 overexpression exacerbated depression-like behaviors and decreased BDNF. Further, luciferase reporter evidence confirmed BDNF was a miR-182 target. Taken together, the current results reveal a potential molecular regulation of miR-182 on BDNF and the pronounced behavioral consequences of this regulation.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.09.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Anhedonia, the loss of interest or pleasure in reward processing, is a hallmark feature of major depressive disorder (MDD), but its underlying neurobiological mechanism is largely unknown. The present study aimed to examine the underlying neural mechanism of reward-related decision-making in patients with MDD. Method: We examined behavioral and neural responses to rewards in patients with first-episode MDD (N=25) and healthy controls (N=25) using the Effort-Expenditure for Rewards Task (EEfRT). The task involved choices about possible rewards of varying magnitude and probability. We tested the hypothesis that individuals with MDD would exhibit a reduced neural response in reward-related brain structures involved in cost-benefit decision-making. Results: Compared with healthy controls, patients with MDD showed significantly weaker responses in the left caudate nucleus when contrasting the 'high reward'-'low reward' condition, and blunted responses in the left superior temporal gyrus and the right caudate nucleus when contrasting high and low probabilities. In addition, hard tasks chosen during high probability trials were negatively correlated with superior temporal gyrus activity in MDD patients, while the same choices were negatively correlated with caudate nucleus activity in healthy controls. Conclusions: These results indicate that reduced caudate nucleus and superior temporal gyrus activation may underpin abnormal cost-benefit decision-making in MDD.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; 64:52-9. DOI:10.1016/j.pnpbp.2015.07.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immune activation and failure of physiologic compensatory mechanisms over time have been implicated in the pathophysiology of illness progression in bipolar disorder. Recent evidence suggests that such changes are important contributors to neuroprogression and may mediate the cross-sensitization of episode recurrence, trauma exposure and substance use. The present review aims to discuss the potential factors related to bipolar disorder refractoriness and neuroprogression. In addition, we will discuss the possible impacts of early therapeutic interventions as well as the alternative approaches in late stages of the disorder.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.09.005
  • Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.09.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol dependence is characterized by a reduction in reward threshold, development of a negative affective state, and significant cognitive impairments. Dependence-induced glutamatergic neuroadaptations in the neurocircuitry mediating reward, affect and cognitive function are thought to underlie the neural mechanism for these alterations. These changes serve to promote increased craving for alcohol and facilitate the development of maladaptive behaviors that promote relapse to alcohol drinking during periods of abstinence. To review the extant literature on the effects of chronic alcohol exposure on glutamatergic neurotransmission and its impact on reward, affect and cognition. Evidence from a diverse set of studies demonstrates significant enhancement of glutamatergic activity following chronic alcohol exposure and up-regulation of GluN2B-containing NMDA receptor expression and function is a commonly observed phenomenon that likely reflects activity-dependent adaptive homeostatic plasticity. However, changes in NMDA receptors and additional glutamatergic neuroadaptations are often circuit and cell-type specific. Dependence-induced alterations in glutamate signaling contribute to many of the symptoms experienced in addicted individuals and can persist well into abstinence. This suggests they play an important role in the development of behaviors that increase the probability for relapse. As our understanding of the complexity of the neurocircuitry involved in the addictive process has advanced, it has become increasingly clear that investigations of cell-type and circuit-specific effects are required to gain a more comprehensive understanding of the glutamatergic adaptations and their functional consequences in alcohol addiction. While pharmacological treatments for alcohol dependence and relapse targeting the glutamatergic system have shown great promise in preclinical models, more research is needed to uncover novel, possibly circuit-specific, targets with improved efficacy and reduced side effects. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 09/2015; DOI:10.1016/j.pnpbp.2015.08.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the interplay between the neurotransmitters dopamine and glutamate in the striatum has become the highlight of several theories of neuropsychiatric illnesses, such as schizophrenia. Using in vivo brain imaging in humans, alterations in dopamine and glutamate concentrations have been observed in several neuropsychiatric disorders. However, it is unclear a priori how alterations in striatal dopamine should modulate glutamate concentrations in the basal ganglia. In this selective mini-review, we examine the consequence of reducing striatal dopamine functioning on glutamate concentrations in the striatum and cortex; regions of interest heavily examined in the human brain imaging studies. We examine the predictions of the classical model of the basal ganglia, and contrast it with findings in humans and animals. The review concludes that chronic dopamine depletion (>4months) produces decreases in striatal glutamate levels which are consistent with the classical model of the basal ganglia. However, acute alterations in striatal dopamine functioning, specifically at the D2 receptors, may produce opposite affects. This has important implications for models of the basal ganglia and theorizing about neurochemical alterations in neuropsychiatric diseases. Moreover, these findings may help guide a priori hypotheses for (1)H-MRS studies measuring glutamate changes given alterations in dopaminergic functioning in humans. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 08/2015; 65. DOI:10.1016/j.pnpbp.2015.08.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence has demonstrated that astrocytes play a pivotal role in the normal functioning of the nervous system. This new conceptual framework has set the groundwork to be able to hypothesize that astrocytes could underlie signs and symptoms of mental diseases. Stress is a major risk factor in the etiology of several psychiatric diseases, such as anxiety disorders and depression. Hence, understanding the effects of stress on astrocytes and how these changes contribute to the development of psychiatric endophenotypes is crucial for both a better comprehension of mental illness and for potential targeted treatment of stress-related mental disorders. Here, we describe the currently used approaches and recent evidence showing astrocyte alterations induced by chronic and acute stress in animals. In addition, the relevance of these changes in stress-induced behavioral sequelae and human data linking astrocytes with neuropsychiatric disorders related to stress are also discussed. All together, the data indicate that astrocytes are also an important target of stress, with both chronic and acute stressors being able to alter the morphology or the expression of several astrocyte specific proteins in brain areas that are known to play a critical role in emotional processing, such as the prefrontal cortex, hippocampus and amygdala. Furthermore, different lines of evidences suggest that these changes may contribute, at less in part, to the behavioral consequences of stress. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 08/2015; DOI:10.1016/j.pnpbp.2015.08.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 08/2015; 65. DOI:10.1016/j.pnpbp.2015.08.007