Recent Patents on Mechanical Engineering

Description

  • Impact factor
    0.00
  • 5-year impact
    0.00
  • Cited half-life
    0.00
  • Immediacy index
    0.00
  • Eigenfactor
    0.00
  • Article influence
    0.00
  • ISSN
    1874-477X

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Shape control of adaptive wings has the potential to improve aircraft aerodynamic performance during cruise. In recent years, several patents have been issued for inventions in the field of morphing wings, using hydraulic, electromechanical or smart material-based actuation concepts and architectures. In the framework of SARISTU project (EU-FP7), the joint integration of different conformal morphing concepts in a laminar wing is investigated to improve aircraft performance through a 6% drag reduction, with a positive effect on fuel consumption and required take-off fuel load. An innovative seamless morphing wing incorporating a gapless morphing leading edge, a morphing trailing edge and a wingtip active trailing edge is developed to pursue optimal wing geometry for any flight condition. This paper proposes a state of the art technology to design the actuation system of a morphing trailing edge, consisting of a flexible outer skin and an internal driving mechanism. Focus is given to the modeling and analysis of the morphing actuation, and its integration in the seamless flexible trailing edge control surface. The actuation system is driven by servo rotary actuators and it is designed and established to control the wing trailing edge in order to obtain pre-defined airfoil shapes maximizing wing aerodynamic efficiency. The actuation concept relies on a quick-return mechanism driven by load-bearing actuators controlling the morphing ribs individually. The actuation system is both analytically and numerically addressed. To validate the design, experiments are then carried out with the purpose of estimating the control movement functions suitable for single airfoil camber variations. The morphing rib kinematics including the actuation system is designed to withstand operational pressure loads and actuation forces.
    Recent Patents on Mechanical Engineering 07/2014; 7(2):138-148.
  • Recent Patents on Mechanical Engineering 01/2013; 6(1):26-31.
  • Recent Patents on Mechanical Engineering 01/2013; 6(2):107-121.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A solution to the state estimation problem of systems with unmeasurable non-zero mean inputs/disturbances, which do not satisfy the disturbance decoupling conditions, is given using the Kalman filtering and Bayesian estimation theory. The proposed estimation algorithm, named Supervisory Kalman Filter (SKF), consists of a Kalman filter with an extra update step which is inspired by the particle filtering technique. The extra step, called supervisory layer, numerically solves the measurement equations for the portion of the state vector that cannot be estimated by the Kalman filter. First, it produces N randomly generated state vectors, the particles, which are distributed based on the Kalman filter’s last updated estimate. Then, the estimated measurement vector associated with each particle is compared to the actual measurement vector to identify the particle’s probability to be a solution. Finally, a so-called resampling stage is implemented to refine the particles with higher likelihoods. The effectiveness of the SKF is demonstrated by comparing its estimation performance with that of the standard Kalman Filter and the particle filter for a vehicle state estimation problem. The estimation results confirm that the SKF precisely estimates those states of the vehicle that cannot be estimated by either the Kalman filter or the particle filter, regardless of the unknown disturbances from the road. The filtering methodology offered in the article has a potential to improve performance of the systems presented in the patents WO2011115960, WO2010024751, US8073528, and US20110299730.
    Recent Patents on Mechanical Engineering 05/2012;
  • Recent Patents on Mechanical Engineering 01/2012; 5:79-88.
  • Recent Patents on Mechanical Engineering 01/2012; 5(3):20-29.
  • Recent Patents on Mechanical Engineering 01/2012; 5(2):176-183.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the era of miniature, laser microjoining has been evolving as a prospective smaller scale manufacturing process. The latest development in the field of laser technology brought new opportunities for laser to join wide variety of materials used in microsystems. In the growing technological field like micro-electro-mechanical systems (MEMS) and biomedical applications, the laser microjoining has the potential for application as encapsulation of miniature. However, the feasibility of microjoining depends on pulse modulation strategy and wavelength for selective range of laser power and laser irradiation intensity. Development and adaptation of new methodology also brings the flexibility in micro scale joining process with reduced defects and sound quality. A number of patents on the design of apparatus and methodology in this area show the signature of the development of the field. The current review article is focused on various aspects of micro scale joining process in the perspective of practical application. First, experimental investigation on the type of laser, process conditions, materials and feasibility of microjoining processes is reviewed. Secondly, on-line monitoring and control of the microjoining process is analyzed. An extensive part of the article is devoted to the review of numerical process model. It is anticipated that at ultrashot pulsed laser, the non-Fourier heat conduction analysis is more appropriate to signify rapid propagation of heat wave. Except from current prospective application, the future research direction and potential applications are also discussed. In a nutshell, the review article provides an overview of microjoining process which is extracted from literature and is required for promising development in microsystem technology.
    Recent Patents on Mechanical Engineering 01/2011; 4(2):153.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Continuous research efforts have been devoted to the fundamental understanding of aircraft aerodynamics and the introduction of new concepts and innovations for the improvement of basic and fundamental aircraft aerodynamic performance, and hence economy, which leads to the enhancement of lift and the reduction of drag. It is also well known that the trailing vortices which reflect the lift as well as drag characteristics of the aircraft could be optimized for better aircraft performance characteristics and reduction of environmental impact as well as hazardous interference to other flight vehicles and/or objects. Research in enhanced aerodynamic efficiency has led to geometrical modifications, novel devices and features on the aircraft wings, such as blended-wing-body configuration, airfoil profiles and winglet designs, introduction of and/or invention of sensors for identifying relevant physical phenomena or measuring devices, introduction of novel computational methods to assess the prevailing force system with better accuracy through meticulous modeling, and introduction of control system and procedures for wake vortices alleviation and aerodynamic configuration optimization. Typical winglets configuration can significantly reduce the induced drag (in the order of less than 10%) with a resulting increase in wing lift-drag ratio and near the design lift coefficient. The corresponding improvement in lift-drag ratio is more than twice as great as that achieved with the comparable wing-tip extension. As also observed in many aircrafts produced in the last decades, only winglets have demonstrated sufficient benefits to find application on modern airliners. Further enhanced aircraft aerodynamic performance are suggested by introduction of recent innovative designs and patents of winglets, sharklets, blended winglets, capped winglets, s-shaped winglets and spiroidal winglet. The review identifies stability of various configurations of vortices, vortex decay and means of reducing vortex hazard. Passive wake vortices alleviation systems utilize the natural evolution of the instability modes with the highest growth rates while active systems rely on accelerating selected modes of instability by imposing the vortices individually or as a system. The passive system is essentially a vortex wake, hence an aerodynamic surface design, while an active system is an actuator design effort, respectively.
    Recent Patents on Mechanical Engineering 01/2011; 4:83-129.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In many technical areas structural vibration loads are safety critical design drivers. Here, the improvement of reliability and safety, the reduction of mass, the extension of service life, as well as the reduction of manufacturing cost are desired. Especially lightweight structural design in general is a compromise between mass and robustness with regard to dynamic loads. The structural stresses and strains due to displacements caused by dynamic loads can be reduced by mechanical damping based on passive or active measures. Passive damping systems do not require electronics, control algorithms, power, actuators, sensors or complex maintenance. The simple physical effect of passive dampers is based on the dissipation of load induced energy. The patent DE10138250 (November 2008) described in the present paper is based on the function of a very simple passive friction-damping device for sandwich structures. Regarding this invention, passive friction elements are placed between the face sheets of composite sandwich panels. The damping effect is verified by simple tests.
    Recent Patents on Mechanical Engineering 11/2010; Vol 3(2010-11-3):183-190.
  • Recent Patents on Mechanical Engineering 01/2010; 1(3):211-216.
  • Recent Patents on Mechanical Engineering 01/2010; 1(2):96-105.