Alcohol (Fayetteville, N.Y.) Journal Impact Factor & Information

Publisher: Elsevier Masson

Journal description

Current impact factor: 2.01

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.006
2013 Impact Factor 2.038
2012 Impact Factor 2.255
2011 Impact Factor 2.468
2010 Impact Factor 2.423
2009 Impact Factor 2.407
2008 Impact Factor 2.363
2007 Impact Factor 2.14
2006 Impact Factor 2.02
2005 Impact Factor 1.743
2004 Impact Factor 1.874
2003 Impact Factor 1.585
2002 Impact Factor 1.693
2001 Impact Factor 1.31
2000 Impact Factor 1.495
1999 Impact Factor 1.433
1998 Impact Factor 1.32
1997 Impact Factor 1.264
1996 Impact Factor 1.324
1995 Impact Factor 1.753
1994 Impact Factor 1.373
1993 Impact Factor 1.523
1992 Impact Factor 1.5

Impact factor over time

Impact factor

Additional details

5-year impact 2.32
Cited half-life 9.40
Immediacy index 0.29
Eigenfactor 0.00
Article influence 0.59
ISSN 1873-6823

Publisher details

Elsevier Masson

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 01/05/2015
    • 'Elsevier Masson' is an imprint of 'Elsevier'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Larval zebrafish present unique opportunities to study the behavioral responses of a model organism to environmental challenges during early developmental stages. The purpose of the current study was to investigate the locomotor activities of AB strain zebrafish larvae at 5 and 7 days post-fertilization (dpf) in response to light changes under the influence of ethanol, and to explore potential neurological mechanisms that are involved in ethanol intoxication. AB strain zebrafish larvae at both 5 and 7 dpf were treated with ethanol at 0% (control), 0.1%, 0.25%, 0.5%, 1%, and 2% (v/v%). The locomotor activities of the larvae during alternating light-dark challenges, as well as the locomotor responses immediately following the light transitions, were investigated. The levels of various neurotransmitters were also measured in selected ethanol-treated groups. The larvae at 5 and 7 dpf demonstrated similar patterns of locomotor responses to ethanol treatment. Ethanol treatment at 1% increased the swimming distances of the zebrafish larvae in the dark periods, but had no effect on the swimming distances in the light periods. In contrast, ethanol treatment at 2% increased the swimming distances in the light periods, but did not potentiate the swimming activity in the dark periods, compared to controls. Differences in the levels of neurotransmitters that are involved in norepinephrine, dopamine, and serotonin pathways were also observed in groups with different ethanol treatments. These results indicated the behavioral studies concerning the ethanol effects on locomotor activities of zebrafish larvae could be carried out as early as 5 dpf. The 1% and 2% ethanol-treated zebrafish larvae modeled ethanol effects at different intoxication states, and the differences in neurotransmitter levels suggested the involvement of various neurotransmitter pathways in different ethanol intoxication states.
    Alcohol (Fayetteville, N.Y.) 09/2015; DOI:10.1016/j.alcohol.2015.08.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical data indicate that cutaneous burn injuries covering greater than 10% of the total body surface area are associated with significant morbidity and mortality, in which pulmonary complications, including acute respiratory distress syndrome (ARDS), contribute to nearly half of all patient deaths. Approximately 50% of burn patients are intoxicated at the time of hospital admission, which increases days on ventilators by 3-fold, and doubles the length of hospitalization, compared to non-intoxicated burn patients. The most common drinking pattern in the United States is binge drinking, where an individual rapidly consumes alcoholic beverages (4 for women, 5 for men) in 2 h. An estimated 38 million Americans binge drink, often several times per month. Experimental data demonstrate that a single binge-ethanol exposure, prior to scald injury, impairs innate and adaptive immune responses, thereby enhancing infection susceptibility and amplifying pulmonary inflammation, neutrophil infiltration, and edema, and is associated with increased mortality. Since these characteristics are similar to those observed in ARDS burn patients, our study objective was to determine whether ethanol intoxication and burn injury and the subsequent pulmonary congestion affect physiological parameters of lung function, using non-invasive and unrestrained plethysmography in a murine model system. Furthermore, to mirror young adult binge-drinking patterns, and to determine the effect of multiple ethanol exposures on pulmonary inflammation, we utilized an episodic binge-ethanol exposure regimen, where mice were exposed to ethanol for a total of 6 days (3 days ethanol, 4 days rest, 3 days ethanol) prior to burn injury. Our analyses demonstrate mice exposed to episodic binge ethanol and burn injury have higher mortality, increased pulmonary congestion and neutrophil infiltration, elevated neutrophil chemoattractants, and respiratory dysfunction, compared to burn or ethanol intoxication alone. Overall, our study identifies plethysmography as a useful tool for characterizing respiratory function in a murine burn model and for future identification of therapeutic compounds capable of restoring pulmonary functionality.
    Alcohol (Fayetteville, N.Y.) 09/2015; DOI:10.1016/j.alcohol.2015.06.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: The onset of puberty is the result of the increased secretion of hypothalamic luteinizing hormone-releasing hormone (LHRH). The pubertal process can be altered by substances that can affect the prepubertal secretion of this peptide. Alcohol is one such substance known to diminish LHRH secretion and delay the initiation of puberty. The increased secretion of LHRH that normally occurs at the time of puberty is due to a decrease of inhibitory tone that prevails prior to the onset of puberty, as well as an enhanced development of excitatory inputs to the LHRH secretory system. Additionally, it has become increasingly clear that glial-neuronal communications are important for pubertal development because they play an integral role in facilitating the pubertal rise in LHRH secretion. Thus, in recent years attempts have been made to identify specific glial-derived components that contribute to the development of coordinated communication networks between glia and LHRH cell bodies, as well as their nerve terminals. Transforming growth factor-α and transforming growth factor-β1 are two such glial substances that have received attention in this regard. This review summarizes the use of multiple neuroendocrine research techniques employed to assess these glial-neuronal communication pathways involved in regulating prepubertal LHRH secretion and the effects that alcohol can have on their respective functions.
    Alcohol (Fayetteville, N.Y.) 09/2015; DOI:10.1016/j.alcohol.2015.08.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the study is to clarify the effect of 7 days of ethanol administration upon brain histaminergic neurons in rats. Male Wistar rats were injected intraperitoneally (i.p.) with 20% ethanol/saline (0.85% NaCl) daily, over 7 days, whereas control rats were given saline. The animals were decapitated 24 h after the 7th injection and samples of hypothalamus were prepared for light and electron microscopy, accompanied by morphometry to examine the histaminergic neurons. It was found that ethanol administration gradually decreased the duration of alcohol-induced sleep and decreased the total amount of histaminergic neurons and the amount of histologically normal neurons, but increased the amount of hypochromic neurons and shadow cells. The histaminergic neuron bodies and nuclei decreased in size. The ultrastructural changes in histaminergic neurons demonstrated activation of their nuclear apparatus, both destruction or hypertrophy and hyperplasia of organelles, especially lysosomes. The histochemical examination revealed the activation of lactate dehydrogenase and acid phosphatase, and inhibition of NADH-, NADPhH, and succinate dehydrogenases. Following 7 days of ethanol administration, histaminergic neurons exhibit the structural signs of hyperactivity, which can be related to neuronal adaptation to the actions of ethanol, and increased behavioral tolerance to ethanol. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 09/2015; 49(6):589-595. DOI:10.1016/j.alcohol.2015.06.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 08/2015; DOI:10.1016/j.alcohol.2015.06.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 08/2015; DOI:10.1016/j.alcohol.2015.06.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to analyze the association between alcohol consumption and the risk of developing the most common types of cancer in the Brazilian population. It is a case-control study in which the most common types of cancer were considered as cases and non-melanoma skin cancers as controls. Data were routinely obtained by hospital-based cancer registrars. Individuals between 18 and 100 years old, diagnosed between January 1, 2000 and December 31, 2009, with information regarding alcohol consumption, were included. The odds ratio (OR) for each type of cancer was calculated, adjusting for confounding variables. The etiologic fraction (EF) was calculated in cases with statistically significant results. The study included 203,506 individuals (110,550 women and 92,956 men), with an average age of 59 years. A statistically significant association was found between alcohol consumption and increased risk of cancers of the respiratory and digestive systems, prostate, and female breast. The association between alcohol consumption and cancers of the urinary tract, male genital organs, and other neoplasias was not statistically significant. Consumption of alcoholic beverages increased the risk of developing cancer of the nasal cavity, pyriform sinus, oral cavity, oropharynx, nasopharynx, larynx, hypopharynx, lung, esophagus, stomach, liver, pancreas, breast, prostate, colon and rectum, and anus and anal canal. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 08/2015; DOI:10.1016/j.alcohol.2015.07.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive downshift provides initial evidence that this type of emotional reactivity may be a predisposing factor in alcoholism.
    Alcohol (Fayetteville, N.Y.) 08/2015; DOI:10.1016/j.alcohol.2015.08.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: While direct ethanol metabolites, including ethylglucuronide (EtG), play an important role for the confirmation of prenatal alcohol exposure (PAE), their utility is often limited by their short half-lives in blood and urine. Maternal hair allows for a retrospective measure of PAE for up to several months. This study examined the validity of hair EtG (hEtG) relative to self-reporting and five other biomarkers in 85 pregnant women. Patients were recruited from a UNM prenatal clinic, which provides care to women with substance abuse and addiction disorders. The composite index, which was based on self-reported measures of alcohol use and allowed us to classify subjects into PAE (n = 42) and control (n = 43) groups, was the criterion measure used to estimate the sensitivity and specificity of hEtG. Proximal segments of hair were collected at enrollment (average 22.0 gestational weeks) and analyzed by LC-MS/MS. At the same visit, maternal blood and urine specimens were collected for analysis of GGT, %dCDT, PEth, uEtG, and uEtS. The study population included mostly opioid-dependent (80%) patients, a large proportion of ethnic minorities (75.3% Hispanic/Latina, 8.2% American Indian, 4.7% African-American), and patients with low education (48.2% < high school). The mean maternal age at enrollment was 26.7 ± 4.8 years. Hair EtG demonstrated 19% sensitivity and 86% specificity. The sensitivities of other biomarkers were comparable (5-20%) to hEtG but specificities were higher (98-100%). Hair EtG sensitivity improved when combined with other biomarkers, especially with GGT (32.5%) and PEth (27.5%). In addition, validity of hEtG improved in patients with less frequent shampooing and those who did not use hair dyes/chemical treatments. These data suggest that hEtG alone is not a sufficiently sensitive or specific biomarker to be used separately for the identification of PAE, but might be useful in a battery along with other maternal biomarkers.
    Alcohol (Fayetteville, N.Y.) 07/2015; 49(6). DOI:10.1016/j.alcohol.2015.06.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic prenatal ethanol exposure (CPEE) can impair long-term potentiation (LTP) in the male hippocampus. Sexually specific alterations were frequently reported in female animals that had been prenatally exposed to ethanol. This study aimed to examine the effects of CPEE on spatial learning and memory, as well as on hippocampal synaptic plasticity in female adolescent rats. Female offspring were selected from dams that had been exposed to 4 g/kg/day of ethanol throughout the gestational period. Subsequently, performance in the Morris water maze (MWM) was determined, while LTP and depotentiation were measured in the hippocampal CA3-CA1 pathway. In the behavioral test, the escape latencies in both initial and reversal training stages were significantly prolonged. Interestingly, LTP was considerably enhanced while depotentiation was significantly depressed. Our results suggest a critical role of synaptic plasticity balance, which may prominently contribute to the cognitive deficits present in CPEE offspring. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 07/2015; 49(6). DOI:10.1016/j.alcohol.2015.05.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10-13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 07/2015; 49(6). DOI:10.1016/j.alcohol.2015.04.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent research found that exposure of selectively bred, Sardinian alcohol-preferring (sP) rats to multiple alcohol concentrations (10%, 20%, and 30%, v/v), under the 4-bottle "alcohol vs. water" choice regimen, in daily 1-h drinking sessions with an unpredictable time schedule, promoted high intakes of alcohol (≥2 g/kg) when the drinking session occurred over the final hours of the dark phase of the light/dark cycle. The present study investigated whether these high intakes of alcohol (a) were associated with alterations in rats' emotional state (Experiment 1) and (b) were pharmacologically manipulable (Experiment 2). In both experiments, over a period of 12 days, sP rats were initially exposed daily to a 1-h drinking session during the dark phase; time of alcohol exposure was changed each day and was unpredictable to rats. The day after this 12-day drinking phase, rats were (a) exposed to the Social Interaction (SI) test at the 1st or 12th hour of the dark phase with no alcohol available (Experiment 1) or (b) treated with the positive allosteric modulator of the GABAB receptor, GS39783 (0, 25, 50, and 100 mg/kg, intragastrically [i.g.]), and exposed to a drinking session at the 12th hour of the dark phase (Experiment 2). In Experiment 1, rats exposed to the SI test during the 12th hour spent approximately 35% less time in "social" behaviors than rats exposed to the SI test during the 1st hour. No difference in "social" behaviors was observed between alcohol-naive sP rats exposed to the SI test at the 1st and 12th hour. In Experiment 2, all doses of GS39783 selectively reduced alcohol intake. These results suggest that (a) expectation of alcohol availability likely exacerbated the anxiety-like state of sP rats and (b) the GABAB receptor is part of the neural substrate underlying these exceptionally high intakes of alcohol in sP rats. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 07/2015; DOI:10.1016/j.alcohol.2015.04.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long Fixed-Interval (FI) schedules, particularly second-order schedules, can engender substantial responding before drug or ethanol delivery that is uninfluenced by the direct effects of the drug or ethanol. Thus, these schedules can be used to study the effects of medications upon drug- or ethanol-seeking, uninfluenced by the direct effects of the self-administered drug or ethanol. Long FI second-order schedules are frequently used in primates and occasionally in rats. Under second-order schedules, completion of one response requirement, e.g., a Fixed Ratio 10 (FR10:S), produces a brief stimulus presentation, e.g., a 1-s 80-dB 4-kHZ tone, and this FR10:S serves as the response unit under another schedule, e.g., an FI 1800-s. Thus, the first FR10 completed after 1800 s would result in delivery both of the tone and of reinforcement, e.g., 10 × 0.01 mL 16% (w/v) ethanol. To examine if such schedules could be effectively used in mice, which have advantages in neurobiological and genetic studies, we trained eight C57BL/6J mice to respond under the schedule just described. This schedule maintained substantial responding. The temporal pattern of behavior was typical of an FI schedule with responding accelerating across the interval. We also examined the effects of acute and chronic administration of fluvoxamine on this responding, and these were modest. Finally, we examined responding when alcohol and/or tone deliveries were withheld, and found that extinction occurred most rapidly when both were withheld. This work demonstrates that long FI schedules of ethanol delivery may be useful in studying ethanol seeking in mice. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 07/2015; 49(6). DOI:10.1016/j.alcohol.2015.06.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensitivity to the interoceptive effects of alcohol is blunted following a period of exposure to the stress hormone corticosterone (CORT), an effect that is suggested to be related, in part, to glutamatergic neuroadaptations. Group II metabotropic glutamate receptors (subtypes 2 and 3; mGluR2/3) modulate several drug- and alcohol-related behaviors, including the interoceptive (discriminative stimulus) effects of alcohol. Therefore, we sought to determine if manipulation of mGluR2/3 would restore sensitivity to the interoceptive effects of alcohol following CORT exposure. Using a two-lever drug discrimination task, male Long-Evans rats were trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water. First, the effect of mGluR2/3 antagonism on the discriminative stimulus effects of alcohol was determined using LY341495 (0.3-3.0 mg/kg; intraperitoneal [IP]). Next, the effects of mGluR2/3 antagonism and activation were assessed in discrimination-trained animals exposed to CORT (300 μg/mL) in the home cage drinking water or water only, for 7 days. Following CORT exposure, decreased sensitivity to alcohol (1 g/kg) was observed. Pretreatment with the mGluR2/3 agonist LY379268 (1.0-3.0 mg/kg; IP), but not the mGluR2/3 antagonist (0.3-1.0 mg/kg; IP), restored sensitivity to alcohol. Additionally, in water controls, mGluR2/3 antagonism and mGluR2/3 activation disrupted expression of the discriminative stimulus effects of alcohol. Together, these findings suggest that blunted sensitivity to the interoceptive effects of alcohol following an episode of heightened stress hormone levels may be due to adaptations in mGluR2/3-related systems. The ability of mGluR2/3 activation to restore sensitivity to alcohol under these conditions lends further support for the importance of these receptors under stress-related conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 06/2015; 49(6). DOI:10.1016/j.alcohol.2015.03.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Addiction, or substance use disorder (SUD), is a devastating psychiatric disease composed of multiple elemental features. As a biobehavioral disorder, escalation of drug and/or alcohol intake is both a cause and consequence of molecular neuroadaptations in central brain reinforcement circuitry. Multiple mesolimbic areas mediate a host of negative affective and motivational symptoms that appear to be central to the addiction process. Brain stress- and reinforcement-related regions such as the central amygdala (CeA), prefrontal cortex (PFC), and nucleus accumbens (NAc) also serve as central processors of ascending nociceptive input. We hypothesize that a sensitization of brain mechanisms underlying the processing of persistent and maladaptive pain contributes to a composite negative affective state to drive the enduring, relapsing nature of addiction, particularly in the case of alcohol and opioid use disorder. At the neurochemical level, pain activates central stress-related neuropeptide signaling, including the dynorphin and corticotropin-releasing factor (CRF) systems, and by this process may facilitate negative affect and escalated drug and alcohol use over time. Importantly, the widespread prevalence of unresolved pain and associated affective dysregulation in clinical populations highlights the need for more effective analgesic medications with reduced potential for tolerance and dependence. The burgeoning epidemic of prescription opioid abuse also demands a closer investigation into the neurobiological mechanisms of how pain treatment could potentially represent a significant risk factor for addiction in vulnerable populations. Finally, the continuing convergence of sensory and affective neuroscience fields is expected to generate insight into the critical balance between pain relief and addiction liability, as well as provide more effective therapeutic strategies for chronic pain and addiction. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 05/2015; DOI:10.1016/j.alcohol.2015.04.005