Biophysical chemistry Journal Impact Factor & Information

Publisher: Elsevier

Journal description

Current impact factor: 2.32

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.319
2012 Impact Factor 2.283
2011 Impact Factor 2.203
2010 Impact Factor 2.108
2009 Impact Factor 2.276
2008 Impact Factor 2.362
2007 Impact Factor 1.913
2006 Impact Factor 1.784
2005 Impact Factor 1.925
2004 Impact Factor 2.102
2003 Impact Factor 1.728
2002 Impact Factor 1.494
2001 Impact Factor 1.918
2000 Impact Factor 1.578
1999 Impact Factor 1.498
1998 Impact Factor 1.522
1997 Impact Factor 1.596
1996 Impact Factor 2.294
1995 Impact Factor 1.696
1994 Impact Factor 1.157
1993 Impact Factor 1.059
1992 Impact Factor 1.314

Impact factor over time

Impact factor

Additional details

5-year impact 2.07
Cited half-life 7.40
Immediacy index 0.59
Eigenfactor 0.01
Article influence 0.69
ISSN 1873-4200

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Kir2.1 channel is characterized by strong inward rectification; however, the mechanism of the steep voltage dependence near the equilibrium potential remains to be investigated. Here, we studied the internal Ba(2+) block of the Kir2.1 channel expressed in Xenopus oocytes. We showed that the driving force and thus the K(+) ion flux significantly influenced the apparent affinity of the block by internal Ba(2+). Kinetic analysis revealed that the binding rate shifted with the driving force and changed steeply near the equilibrium point, either in the presence or absence of the transmembrane electrical field. The unbinding rate was determined by the intrinsic affinity of the site. Mutagenesis studies revealed that the high-affinity binding site for Ba(2+) was located near T141 at the internal entrance of the selectivity filter. The steep change of the blocking affinity near the equilibrium potential may result from the flux-coupling effect in the single-file, multi-ion cytoplasmic pore. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 07/2015; 202. DOI:10.1016/j.bpc.2015.04.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease, has multiple activities in addition to insulin degradation and its malfunction is believed to connect type 2 diabetes with Alzheimer's disease. IDE has been found in many different cellular compartments, where it may experience significant physio-pathological pH variations. However, the exact role of pH variations on the interplay between enzyme conformations, stability, oligomerization state and catalysis is not understood. Here, we use ESI mass spectrometry, atomic force microscopy, surface plasmon resonance and circular dichroism to investigate the structure-activity relationship of IDE at different pH values. We show that acidic pH affects the ability of the enzyme to bind the substrate and decrease the stability of the protein by inducing an α-helical bundle conformation with a concomitant dissociation of multi-subunit IDE assemblies into monomeric units and loss of activity. These effects suggest a major role played by electrostatic forces in regulating multi-subunit enzyme assembly and function. Our results clearly indicate a pH dependent coupling among enzyme conformation, assembly and stability and suggest that cellular acidosis can have a large effect on IDE oligomerization state, inducing an enzyme inactivation and an altered insulin degradation that could have an impact on insulin signaling. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 05/2015; 203-204C:33-40. DOI:10.1016/j.bpc.2015.05.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been earlier established (Pozzi et al. Biochemistry 50 (2011) 10195-10202) that prethrombin-2 crystallizes into two similar but distinct forms: a collapsed form and an alternative form. We employed long molecular dynamics (MD) simulations for these two forms to obtain solvent-equilibrated forms. We find that, at 200ns, the simulated solution collapsed form is quite similar to the X-ray crystal collapsed form, while the simulated solution alternative form deviates from the X-ray crystal alternative form as well as from the solution collapsed form. A detailed structural analysis suggests that the fluctuation of the 140s-loop, in cross-talk with the 220s-loop, may alter the conformation of the W215-E217 segment near the nascent thrombin active site. A rationale is provided for the manner in which interactions of prethrombin-2 with FVa may affect the equilibrium between the two forms of prethrombin-2. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 05/2015; 203-204C. DOI:10.1016/j.bpc.2015.05.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of N6-adenine methylation on the flexibility and shape of palindromic GATC sequences has been investigated by molecular dynamics simulations. Variations in DNA backbone geometry were observed, which were dependent on the degree of methylation and the identity of the bases. While the effect was small, more frequent BI to BII conversions were observed in the GA step of hemimethylated DNA. The increased BII population of the hemimethylated system positively correlated with increased stacking interactions between methylated adenine and guanine, while stacking interactions decreased at the TC step for the fully methylated strand. The flexibility of the AT and TC steps was marginally affected by methylation, in a fashion that was correlated with stacking interactions. The facilitated BI to BII conversion in hemimethylated strands might be of importance for SeqA selectivity and binding. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 05/2015; 203-204C. DOI:10.1016/j.bpc.2015.05.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kv1.3 is one of the widely distributed Shaker type voltage gated potassium channel which performs the outward flow of K(+) ions in excitable cells. In immunological synapse, Kv1.3 plays a pivotal role in antigen dependent activation and proliferation of lymphocytes along with the KCa3.1. The up-regulation of Kv1.3 leads to several T-cell-mediated autoimmune diseases, hence considered as an attractive pharmacological drug target. Here, we have employed molecular modeling, docking and simulation techniques to examine the dynamical properties of Kv1.3 in both open and closed state conformation embedded in DPPC membrane as well as its modes of inhibition against the popularly known scorpion venom OSK1 and its three mutant analogues. The Kv1.3 in open conformation took comparatively more time to get stabilized than the closed state. Both conformations ascertain their stability and the transition between closed to active states is more consistent with the paddle model of channel gating. The binding modes of channel-toxin complexes are well established by identifying strongly interacting amino acids lining at their polar surfaces. Our findings suggest that, two mutant derivatives OSK1-K16,D20 & OSK1-P12,K16,D20 have increased inhibitory potency against Kv1.3. We also pointed out some particular residues responsible for binding of OSK1 with Kv1.3 over other Shaker-type ion channels. We believe that the insights came from Kv1.3-OSK1 interaction will be valuable in pharmacological studies for strategic development of both potent and selective therapeutic drugs against T-cell-mediated autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 04/2015; 203-204C. DOI:10.1016/j.bpc.2015.04.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid and amyloid-like fibrils are a general class of protein aggregates and represent a central topic in life sciences for their involvement in several neurodegenerative disorders and their unique mechanical and supramolecular morphological properties. Both their biological role and their physical properties, including their high mechanical stability and thermodynamic inertia, are related to the structural arrangement of proteins in the aggregates at molecular level. Significant variations may exist in the supramolecular organization of the commonly termed cross-β structure that constitutes the amyloid core. In this context, a fine knowledge of the structural details in fibrils may give significant information on the assembly process and on possible ways of tuning or inhibiting it. Here we propose a simple method based on the combined use of Fourier transform infrared spectroscopy and Fourier transform Raman spectroscopy to accurately reveal structural details in the fibrillar aggregates, side-chain exposure and intermolecular interactions. Interestingly, coupled analysis of mid-infrared spectra reveals antiparallel β-sheet orientation in ConA fibrils. We also report the comparison between THz absorption spectra of Concanavalin A in its native and fibrillar state at different hydration levels, allowing obtaining corroboration of peaks assignation in this range and information on the effect of amyloid supramolecular arrangement on the network dynamics of hydration water. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 04/2015; 199:17-24. DOI:10.1016/j.bpc.2015.02.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 03/2015; 200-201C. DOI:10.1016/j.bpc.2015.03.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here, (13)C NMR is used to confirm our previous hypothesis, that cyanide directly affects glycolytic fluxes through reaction with carbonyl-containing compounds. Intracellularly, at least 3 cyanohydrins were identified. Extracellularly, all signals could be identified and lactonitrile was found to account for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 03/2015; 200-201C. DOI:10.1016/j.bpc.2015.03.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two families of glucose transporter - the Na(+)-dependent glucose cotransporter-1 (SGLT family) and the facilitated diffusion glucose transporter family (GLUT family) - play a crucial role in the translocation of glucose across the epithelial cell membrane. How genetic mutations cause life-threatening diseases like GLUT1-deficiency syndrome (GLUT1-DS) is not well understood. In this review, we have combined previous functional data with our in silico analyses of the bacterial homologue of GLUT members, XylE (an outward-facing, partly occluded conformation) and previously proposed GLUT1 homology model (an inward-facing conformation). A variety of native and mutant side chain interactions were modeled to highlight the potential roles of mutations in destabilizing protein-protein interaction hence triggering structural and functional defects. This study sets the stage for future studies of the structural properties that mediate GLUT1 dysfunction and further suggests that both SGLT and GLUT families share conserved domains that stabilize the transporter structure/function via a similar mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 03/2015; 200-201C. DOI:10.1016/j.bpc.2015.03.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Femtosecond pump-probe spectroscopy was used to investigate the excited state dynamics of the T1 copper site of laccase from Pleurotus ostreatus, by exciting its 600nm charge transfer band with a 15-fs pulse and probing over a broad range in the visible region. The decay of the pump-induced ground-state bleaching occurs in a single step and is modulated by clearly visible oscillations. Global analysis of the two-dimensional differential transmission map shows that the excited state exponentially decays with a time constant of 375fs, thus featuring a decay rate slower than those occurring in quite all the investigated T1 copper site proteins. The ultrashort pump pulse induces a vibrational coherence in the protein, which is mainly assigned to ground state activity, as expected in a system with fast excited state decay. Vibrational features are discussed also in comparison with the traditional resonance Raman spectrum of the enzyme. The results indicate that both excited state dynamics and vibrational modes associated with the T1 Cu laccase charge transfer have main characteristics similar to those of all the T1 copper site-containing proteins. On the other hand, the differences observed for laccase from P. ostreatus further confirm the peculiar hypothesized trigonal T1 Cu site geometry. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 03/2015; 200-201. DOI:10.1016/j.bpc.2015.03.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Centrally located at the ribosomal subunit interface and mRNA tunnel, helix 69 (H69) from 23S rRNA participates in key steps of translation. Ribosome activity is influenced by three pseudouridine modifications, which modulate the structure and conformational behavior of H69. To understand how H69 is affected by the presence of pseudouridine in combination with sequence changes, the biophysical properties of wild-type H69 and representative mutants (A1912G, U1917C, and A1919G) were examined. Results from NMR and circular dichroism spectroscopy indicate that pH-dependent structural changes of wild-type H69 and the chosen mutants are modulated by pseudouridine and loop sequence. The effects of the mutations on global stability of H69 are negligible; however, pseudouridine stabilizes H69 at low pH conditions. Alterations to induced conformational changes of H69 likely result in compromised function, as indicated by previous biological studies. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 03/2015; 200-201. DOI:10.1016/j.bpc.2015.03.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unique advantage of the single molecule approach is to reveal the inhomogeneous subpopulations in an ensemble. For example, smFRET (single molecule fluorescence resonance energy transfer) can identify multiple subpopulations based on the FRET efficiency histograms. However, identifying multiple FRET states with overlapping average values remains challenging. Here, we report a new concept and method to analyze the single molecule FRET data of a ribosome system. The main results are as follows: 1. based on a hierarchic concept, multiple ribosome subpopulations are identified. 2. The subpopulations are self-identified via the cross-correlation analysis of the FRET histogram profiles. The dynamic heterogeneity is tracked after 2min intervals on the same ribosomes individually. 3. The major ribosome subpopulations exchange with each other with a certain pattern, indicating some correlations among the motions of the tRNAs and the ribosomal components. Experiments under the conditions of 20% glycerol or 1mM viomycin supported this conclusion. Copyright © 2015 Elsevier B.V. All rights reserved.
    Biophysical chemistry 03/2015; 199. DOI:10.1016/j.bpc.2015.02.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have measured the affinity of the CysF9[93]β sulfhydryl group of human deoxyhemoglobin and oxyhemoglobin for 5,5'-dithiobis(2-nitrobenzoate), DTNB, between pH ≈5.6 and 9 in order to understand the basis of the reported reduction of the Bohr effect induced by chemical modification of the sulfhydryl. We analyzed the results quantitatively on the basis of published data indicating that the sulfhydryl exists in two conformations that are coupled to the transition between two tertiary structures of hemoglobin in dynamic equilibrium. Our analyses show that the ionizable groups linked to the DTNB reaction have lower pKas of ionization in deoxyhemoglobin compared to oxyhemoglobin. So these ionizable groups should make negative contributions to the Bohr effect. We identify these groups as HisNA2[2]β, HisEF1[77]β and HisH21[143]β. We provide explanations for the finding that hemoglobin, chemically modified at CysF9[93]β, has a lower Bohr effect and a higher oxygen affinity than unmodified hemoglobin.
    Biophysical chemistry 04/2014; 190-191C:41-49. DOI:10.1016/j.bpc.2014.04.002