Talanta Journal Impact Factor & Information

Publisher: Elsevier

Current impact factor: 3.55

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.545
2013 Impact Factor 3.511
2012 Impact Factor 3.498
2011 Impact Factor 3.794
2010 Impact Factor 3.722
2009 Impact Factor 3.29
2008 Impact Factor 3.206
2006 Impact Factor 2.81
2005 Impact Factor 2.391
2004 Impact Factor 2.532
2003 Impact Factor 2.091
2002 Impact Factor 2.054
2001 Impact Factor 1.587
2000 Impact Factor 1.554
1999 Impact Factor 1.185
1998 Impact Factor 1.291
1997 Impact Factor 1.149
1996 Impact Factor 1.228
1995 Impact Factor 1.266
1994 Impact Factor 1.167
1993 Impact Factor 1.129
1992 Impact Factor 1.236

Impact factor over time

Impact factor

Additional details

5-year impact 3.67
Cited half-life 5.80
Immediacy index 0.86
Eigenfactor 0.05
Article influence 0.76
ISSN 1873-3573

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A rapid and simple method for the simultaneous determination of twelve synthetic musks in water samples, using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was successfully developed. The influence of seven factors (volume of the extraction solvent and disperser solvent, sample volume, extraction time, ionic strength, type of extraction and disperser solvent) affecting the UA-DLLME extraction efficiency was investigated using a screening design. The significant factors were selected and optimised employing a central composite design: 80 μL of chloroform, 880 μL of acetonitrile, 6 mL of sample volume, 3.5% (wt) of NaCl and 2 min of extraction time. Under the optimised conditions, this methodology was successfully validated for the analysis of 12 synthetic musk compounds in different aqueous samples (tap, sea and river water, effluent and influent wastewater). The proposed method showed enrichment factors between 101 and 115 depending on the analyte, limits of detection in the range of 0.004-54 ng L-1 and good repeatability (most relative standard deviation values below 10%). No significant matrix effects were found, since recoveries ranged between 71% and 118%. Finally, the method was satisfactorily applied to the analysis of five different aqueous samples. Results demonstrated the existence of a larger amount of synthetic musks in wastewaters than in other water samples (average concentrations of 2800 ng L-1 in influent and 850 ng L-1 in effluent). Galaxolide, tonalide and exaltolide were the compounds most detected.
    Talanta 02/2016; 148:84-93. DOI:10.1016/j.talanta.2015.10.049
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multimodal imaging has made great contribution for diagnosis and therapy of disease since it can provide more effective and complementary information in comparison to any single imaging modality. The design and fabrication of fluorescent-magnetic nanoparticles for multimodal imaging has rapidly developed over the years. Herein, we demonstrate the facile synthesis of GdS coated CdTe nanoparticles (CdTe@GdS NPs) as multimodal agents for fluorescence (FL) and T1-weighted magnetic resonance (MR) imaging. These nanoparticles obtain both prominent fluorescent and paramagnetic properties by coating the GdS shell on the surface of CdTe core via a simple room-temperature route in aqueous solution directly. It is shown that the as-prepared CdTe@GdS NPs have high quantum yield (QY) value of 12% and outstanding longitudinal relaxation rate (r1) of 11.25 mM s-1, which allow them to be employed as FL/MR dual-modal imaging contrast agents. They also exhibit small particle size of 5 nm, excellent colloidal stability and low cellular toxicity for concentrations up to 750 μg mL-1. In addition, with the conjugation of folic acid, the nanoparticles were successfully used for tumor-targeted FL/MR dual-modal imaging in vitro and in vivo.
    Talanta 02/2016; 148:108-115. DOI:10.1016/j.talanta.2015.10.046
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon fibers (CFS) are one kind of important industrial materials that can be obtained commercially at low price. Based on the high extraction efficiency of carbon sorbents, a cheap and accessible carbon fibers-in-poly(ether ether ketone) (PEEK) tube was developed for online in-tube solid-phase microextraction (SPME) method. Coupled to high performance liquid chromatography (HPLC), the CFS-in-tube SPME was applied to analyze eight polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. Extraction conditions (sampling rate, extraction time, methanol content) and desorption time were investigated for optimization of conditions. Under the optimum conditions, the CFS-in-tube SPME-HPLC method provided high extraction efficiency with enrichment factors up to 1748. Good linearity (0.05-50 μg L-1, 0.5-50 μg L-1) and low detection limits (0.01-0.1 μg L-1) were also obtained. The online analysis method was finally applied to determine several model PAHs analytes in real environmental aqueous samples. Some target analytes were detected and relative recoveries were in the range of 92.3-111%. Due to natural chemical stability of carbon fibers and PEEK tube, the CFS-in-tube device exhibited high resistance to organic solvent, acid and alkaline conditions.
    Talanta 02/2016; 148:313-320. DOI:10.1016/j.talanta.2015.11.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sudan dyes are banned as food additives due to the carcinogenicity of their metabolites in the human body. Therefore, it is of great significance for sensitive detection of Sudan dyes. This paper reports a novel nanosensor for Sudan dyes detection based on fluorescence (FL) quenching of hexadecyl trimethyl ammonium bromide (CTAB) stabilized upconversion nanoparticles (UCNPs) through the inner filter effect (IFE). In the presence of Sudan I-IV, the fluorescence emission of UCNPs was effectively quenched due to the absorption bands of Sudan I-IV largely covered the emission bands of UCNPs. Under the optimized conditions, the FL was quenched with Sudan concentration over the range of 0.05-40, 0.01-20, 0.01-40 and 0.05-40 μg/mL for Sudan I-IV, respectively. The corresponding limit of detection is 15.1, 2.83, 3.52 and 16.7 ng/mL (at 3σ/slope) respectively. Meanwhile, the nanosensor shows good selectivity, sensitivity and can be successfully applied to detection of Sudan in chili powder samples.
    Talanta 02/2016; 148:129-134. DOI:10.1016/j.talanta.2015.10.048
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new diffusive gradients in thin films (DGT) device, using Pb(II) ion-imprinted silica (IIS) as the binding agents and commercial cellulose acetate dialysis (CAD) membrane as the diffusion layer (CAD/IIS-DGT), has been developed and evaluated for sampling and measurement of free Pb(II) species. The CAD/IIS-DGT devices were successfully applied to the measurement of free Pb(II) species in synthetic solutions, in natural freshwaters and in industrial wastewaters. The CAD/IIS-DGT provides reliable results over pH range of 4.5-6.5 and a wide range of ionic strength from 1.0×10-3 to 0.7 mol L-1. The concentrations of the free Pb(II) species in synthetic solution containing different concentrations of ligands measured by CAD/IIS-DGT showed a good agreement with the value measured by Pb-ion selective electrode. Field deployments of the CAD/IIS-DGT devices allowed accurate measurements of the concentrations of free Pb(II) species.
    Talanta 02/2016; 148:285-291. DOI:10.1016/j.talanta.2015.11.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1 mol/L Na2HPO4 solution contained 1 mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood.
    Talanta 02/2016; 148:153-162. DOI:10.1016/j.talanta.2015.10.079
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, 3D cell culture technique was proposed to provide a more physiologically-meaningful environment for cell-based assays. With the development of microfluidics technology, cellular response can be quantified by impedance measurement technique in a real-time and non-invasive manner. However, handling of these microfluidic systems requires a trained engineering personnel and the operation is not compatible to traditional biological research laboratories. In this work, we incorporated the impedance measurement technique to paper-based 3D cell culture model and demonstrated non-invasive quantification of cells encapsulated in hydrogel during the culture course. A cellulose filter paper was patterned with an array of circular microchambers. Cells were encapsulated in hydrogel and loaded to the microchambers for culturing cells in 3D environment. At the preset schedule during the culture course, the paper was placed on a glass substrate with measurement electrodes for the impedance measurement. Cells in each microchamber was represented by impedance magnitude and cell proliferation could be studied over time. Also, conventional bio-assay was performed to further confirm the feasibility of the impedimetric quantification of cells encapsulated in hydrogel cultured in the paper-based microchamber. This technique provides a convenient, fast, and non-invasive approach to monitor cells cultured in 3D environment. It has potential to be developed for routine 3D cell culture protocol in biological research laboratories.
    Talanta 01/2016; 147:628-633. DOI:10.1016/j.talanta.2015.10.052
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidized carbon nanotubes were covered with layers of bovine serum albumin to result in so-called restricted-access carbon nanotubes (RACNTs). This material can extract Pb2+ ions directly from untreated human blood serum while excluding all the serum proteins. The RACNTs have a protein exclusion capacity of almost 100% and a maximum Pb2+ adsorption capacity of 34.5 mg g-1. High resolution transmission electron microscopy, scanning transmission electron microscopy and energy dispersive spectroscopy were used to confirm the BSA layer and Pb2+ adsorption sites. A mini-column filled with RACNTs was used in an on-line solid phase extraction system coupled to a thermospray flame furnace atomic absorption spectrometry. At optimized experimental conditions, the method has a detection limit as low as 2.1 μg L-1, an enrichment factor of 5.5, and inter- and intra-day precisions (expressed as relative standard deviation) of <8.1%. Recoveries of the Pb2+ spiked samples ranged from 89.4% to 107.3% for the extraction from untreated human blood serum.
    Talanta 01/2016; 147:478-484. DOI:10.1016/j.talanta.2015.10.023
  • [Show abstract] [Hide abstract]
    ABSTRACT: A multistage optimization of all the parameters affecting detection/response in an LTQ-orbitrap analyzer was performed, using a design of experiments methodology. The signal intensity, a critical issue for mass analysis, was investigated and the optimization process was completed in three successive steps, taking into account the three main regions of an orbitrap, the ion generation, the ion transmission and the ion detection regions. Oleuropein and hydroxytyrosol were selected as the model compounds. Overall, applying this methodology the sensitivity was increased more than 24%, the resolution more than 6.5%, whereas the elapsed scan time was reduced nearly to its half. A high-resolution LTQ Orbitrap Discovery mass spectrometer was used for the determination of the analytes of interest. Thus, oleuropein and hydroxytyrosol were infused via the instruments syringe pump and they were analyzed employing electrospray ionization (ESI) in the negative high-resolution full-scan ion mode. The parameters of the three main regions of the LTQ-orbitrap were independently optimized in terms of maximum sensitivity. In this context, factorial design, response surface model and Plackett-Burman experiments were performed and analysis of variance was carried out to evaluate the validity of the statistical model and to determine the most significant parameters for signal intensity. The optimum MS conditions for each analyte were summarized and the method optimum condition was achieved by maximizing the desirability function. Our observation showed good agreement between the predicted optimum response and the responses collected at the predicted optimum conditions.
    Talanta 01/2016; 147:402-409. DOI:10.1016/j.talanta.2015.10.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: A uniform graphene nanodots inlaid porous gold electrode was prepared via ion beam sputtering deposition (IBSD) and mild corrosion chemistry. HRTEM, SEM, AFM and XPS analyses revealed the successful fabrication of graphene nanodots inlaid porous gold electrode. The as-prepared porous electrode was used as π-orbital-rich drug loading platform to fabricate an electrochemically controlled drug release system with high performance. π-orbital-rich drugs with amino mioety, like doxorubicin (DOX) and tetracycline (TC), were loaded into the graphene nanodots inlaid porous gold electrode via non-covalent π-π stacking interaction. The amino groups in DOX and TC can be easily protonated at acidic medium to become positively-charged NH3+, which allow these drug molecules to be desorbed from the porous electrode surface via electrostatic repulsion when positive potential is applied at the electrode. The drug loading and release experiment indicated that this graphene nanodots inlaid porous gold electrode can be used to conveniently and efficiently control the drug release electrochemically. Not only did our work provide a benign method to electrochemically controlled drug release via electrostatic repulsion process, it also enlighten the promising practical applications of micro electrode as a drug carrier for precisely and efficiently controlled drug release via embedding in the body.
    Talanta 01/2016; 147:184-192. DOI:10.1016/j.talanta.2015.09.020
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new, simple, ultra-sensitive and selective approach has been reported for the "on spot" colorimetric detection of creatinine based on calix[4]arene functionalized gold nanoparticles (AuNPs) with excellent discrimination in the presence of other biomolecules. The lower detection limit of the method is 2.16 nM. The gold nanoparticles and p-tert-butylcalix[4]arene were synthesized by microwave assisted method. Specifically, in our study, we used dynamic light scattering (DLS) which is a powerful method for the determination of small changes in particle size, improved selectivity and sensitivity of the creatinine detection system over colorimetric method. The nanoassembly is characterized by Transmission electron microscopy (TEM), DLS, UV-vis and ESI-MS spectroscopy, which demonstrates the binding affinity due its ability of hydrogen bonding and electrostatic interaction between -NH group of creatinine and pSDSC4. It exhibits fast response time (<60 s) to creatinine and has long shelf-life (>5 weeks). The developed pSDSC4-AuNPs based creatinine biosensor will be established as simple, reliable and accurate tool for the determination of creatinine in human urine samples.
    Talanta 01/2016; 147:590-597. DOI:10.1016/j.talanta.2015.10.029
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both polyurethane foam (PUF) and sorbent-impregnated PUF (SIP) passive air sampling (PAS) methods were deployed and compared separately for the analysis of organophosphate esters (OPEs) in outdoor atmospheric environment. During an continuous period of 84 days, parallel samples were also collected by a high-volume active air sampler (HV-AAS) to assess the contamination levels and to calibrate uptake parameters of PAS. The total concentration of OPEs in both particulate and gaseous phases ranged from 1.50 to 5.64 ng m-3 in ambient air. Tris(2-chloroisopropyl) phosphate (TCPP) was the dominating analog, representing 78±9% of total OPE concentration. SIP-PAS showed longer linear-phase sampling period for TCPP, and accumulated more amount of the most volatile triethyl phosphate (TEP) and tributyl phosphate (TBP) homologues, while similar sorption performances of both PAS methods were found for most of the semi-volatile OPEs. Linear sampling rates in PUF-PAS and SIP-PAS disks were calculated for individual OPEs except for TEP and TBP, and the average uptake rates (3.3±1.1 and 3.5±1.7 m3 d-1, respectively) were close to the acknowledged value (4 m-3 d-1) for persistent organic pollutants. Besides, isotopic labeled D15-Triphenyl phosphate (TPhP) could be used as a viable depuration compound to calculate site-specific sampling rates of OPEs, with a linear loss of up to ∼60% at the end of deployment time.
    Talanta 01/2016; 147:69-75. DOI:10.1016/j.talanta.2015.09.034
  • [Show abstract] [Hide abstract]
    ABSTRACT: A simple and fast method for the multi-elemental determination of 18 inorganic constituents (P, S, Cl, K, Ca, Ti, Cr, V, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb) in organic fertilizers employing slurry sampling and total reflection X-ray fluorescence (TXRF) is presented. A 23 factorial design with a central point was employed to optimize the slurry sampling procedure. The internal standard and instrumental conditions were optimized by univariate studies. The selectivity of the method to determining Se, As, Pb, Cr, Ni and Cd was assessed. The accuracy was evaluated by the analysis of four standard reference materials (SRM). The recoveries varied from 72% to 114%. For most of the elements, good agreement was achieved between the certified value and the value measured in the SRM. The relative standard deviation (RSD %) ranged from 0.5% to 14%. The evaluated method was applied to the determination of analytes in the press cake of palm, castor, curcas, sunflower, fodder turnip, white lupin, rapeseed and pequi, and their potential to be used as organic fertilizer was evaluated in accordance with Brazilian legislation.
    Talanta 01/2016; 147:485-492. DOI:10.1016/j.talanta.2015.10.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: During fuel combustion mercury, as Hg0 and Hg2+ forms, is emitted to the atmosphere. Effective reduction of mercury emission requires applying speciation systems for emission control and research. An important part of all mercury determination and speciation systems are the calibrators. Calibrators are responsible for the accuracy of mercury determination and, in consequence, the effective reduction of mercury emission. The aim of the work was to construct a portable HgCl2 calibrator. The purpose of the device was the control of mercury speciation systems for continuous measurements and study of HgCl2 sorption. As a result of previously conducted research, the portable Hg2+ ultrasonic calibrator was designed, constructed and tested. The ultrasonic calibrator generates a stable stream of HgCl2 (RSD=2.8% for CHg=28 µg/m3). The correlation between theoretical and reading concentration of HgCl2 was R2=0.9983. The average recovery of HgCl2 was 95%. The advantages of the ultrasonic Hg2+ calibrator are: high accuracy and selectivity, low pressure of HgCl2 stream and very low cost of production. The calibrator was successfully tested, both in the laboratory and in the power plant, during a preliminary study on HgCl2 sorption on a fly ash filter.
    Talanta 01/2016; 147:28-34. DOI:10.1016/j.talanta.2015.09.019
  • [Show abstract] [Hide abstract]
    ABSTRACT: A chemiluminescence resonance energy transfer (CRET) platform was developed for sensitive and label-free detection of protease by using trypsin as a model analyte. In this CRET platform, bis(2,4,6-trichlorophenyl)oxalate-hydrogen peroxide chemiluminescence (CL) reaction was utilized as an energy donor and bovine serum albumin (BSA)-stabilized gold nanoclusters (Au NCs) as an energy acceptor. The BSA-stabilized Au NCs triggered the CRET phenomenon by accepting the energy from TCPO-H2O2 CL reaction, thus producing intense CL. In the presence of trypsin, the protein template of BSA-stabilized Au NCs was digested, which frustrated the energy transfer efficiency between the CL donor and the BSA-stabilized Au NCs, leading to a significant decrease in the CL signal. The decreased CL signal was proportional to the logarithm of trypsin concentration in the range of 0.01-50.0 μg mL-1. The detection limit for trypsin was 9 ng mL-1 and the relative standard deviations were lesser than 3% (n=11). This Au NCs-based CRET platform was successfully applied to the determination of trypsin in human urine samples, demonstrating its potential application in clinical diagnosis.
    Talanta 01/2016; 147:63-68. DOI:10.1016/j.talanta.2015.09.033
  • [Show abstract] [Hide abstract]
    ABSTRACT: A simple solventless injection method was introduced based on the using of a solid-phase microextraction (SPME) fiber for injection of large amounts of the analytes extracted by the magnetic solid phase extraction (MSPE) procedure. The resulted extract from MSPE procedure was loaded on a G-coated SPME fiber, and then the fiber was injected into the gas chromatography (GC) injection port. This method combines the advantages of exhaustive extraction property of MSPE and the solvent-less injection of SPME to improve the sensitivity of the analysis. In addition, the analytes were re-concentrated prior to inject into the gas chromatography (GC) inlet because of the organic solvent removing from the remaining extract of MSPE technique. Injection of the large amounts of analytes was made possible by using the introduced procedure. Fourteen polycyclic aromatic hydrocarbons (PAHs) with different volatility were used as model compounds to investigate the method performance for volatile and semi-volatile compounds. The introduced method resulted in the higher enhancement factors (5097-59376), lower detection limits (0.29-3.3 pg mL-1), and higher sensitivity for the semi-volatile compounds compared with the conventional direct injection method.
    Talanta 01/2016; 147:59-62. DOI:10.1016/j.talanta.2015.09.025