Publisher: Elsevier


  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • ISSN

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Voluntary deposit by author of pre-print allowed on Institutions open scholarly website and pre-print servers
    • Voluntary deposit by author of authors post-print allowed on institutions open scholarly website including Institutional Repository
    • Deposit due to Funding Body, Institutional and Governmental mandate only allowed where separate agreement between repository and publisher exists
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PMC after 12 months
    • Authors who are required to deposit in subject repositories may also use Sponsorship Option
    • Pre-print can not be deposited for The Lancet
  • Classification
    ​ green

Publications in this journal

  • Sinan Cemgil Sultan, Ülkü Anik
    Talanta 11/2014; 129:523.
  • Talanta 11/2014; 130.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to develop and validate a new microbiological assay to determine potency of linezolid in injectable solution. 2(4) factorial and central composite designs were used to optimize the microbiological assay conditions. In addition, we estimated the measurement uncertainty based on residual error of analysis of variance of inhibition zone diameters. Optimized conditions employed 4mL of antibiotic 1 medium inoculated with 1% of Staphylococcus aureus suspension, and linezolid in concentrations from 25 to 100µgmL(-1). The method was specific, linear (Y=10.03X+5.00 and Y=9.20X+6.53, r(2)=0.9950 and 0.9987, for standard and sample curves, respectively), accurate (mean recovery=102.7%), precise (repeatability=2.0% and intermediate precision=1.9%) and robust. Microbiological assay׳s overall uncertainty (3.1%) was comparable to those obtained for other microbiological assays (1.7-7.1%) and for determination of linezolid by spectrophotometry (2.1%) and reverse-phase ultra-performance liquid chromatography (RP-UPLC) (2.5%). Therefore, it is an acceptable alternative method for the routine quality control of linezolid in injectable solution.
    Talanta 09/2014; 127:225-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A meaningful characterization of the photo-induced curing process of materials based on styrene monomers functionalized with thymine and charged ionic groups was accomplished using FT-IR spectroscopy in combination with second-order multivariate calibration algorithms. The polymer composition as well as the irradiation dose effects on the photo-crosslinking of copolymer films was experimentally determined. Each FT-IR absorption spectra was decomposed into the contribution of individual species by means of chemometric algorithms. A second-order strategy involving a three-way array for each sample and analyzing all arrays simultaneously was used. Temperature and solvent frequently have a strong influence on the FT-IR peak producing shifts and trilinearity lost. A new methodology to properly pre-align the spectroscopic matrix data is used based on the decomposition of a three-way array via a suitably initialized and constrained PARAFAC model. The chemical reaction mechanism describing the underlying process in terms of identifiable steps was determined. Associated key parameters and equilibrium rate constants that characterize the interconversion and stability of diverse species were predicted. Additionally, it was possible to quantify all the species even in the presence of a non-calibrated compound.
    Talanta 09/2014; 127:204-10.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A multi-walled carbon nanotubes (MWNTs) bridged mesocellular graphene foam (MGF) nanocomposite (MWNTs/MGF) modified glassy carbon electrode was fabricated and successfully used for simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (TRP). Comparing with pure MGF, MWNTs or MWNTs/GS (graphene sheets), MWNTs/MGF displayed higher catalytic activity and selectivity toward the oxidation of AA, DA, UA and TRP. Under the optimal conditions, MWCNs/MGF/GCE can simultaneously detect AA, DA, UA and TRP with high selectivity and sensitivity. The detection limits were 18.28µmolL(-1), 0.06µmolL(-1), 0.93µmolL(-1) and 0.87µmolL(-1), respectively. Moreover, the modified electrode exhibited excellent stability and reproducibility.
    Talanta 09/2014; 127:255-61.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications.
    Talanta 09/2014; 127:68-74.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A fluorescent probe was synthesized and demonstrated to be highly selective and sensitive in the reaction with copper (II) ion, generating a large variation of the fluorescence intensity in a dose-response manner. The probe contains a dansyl moiety as fluorophore and a multidentate ligand for copper (II) ion recognition. The reaction of the molecular probe with copper (II) ion proceeds rapidly and irreversibly in a 1 to 1 stoichiometric way, leading to the production of stable copper (II) complex, which subsequently results in the quenching of fluorescence. The detection limit for copper (II) ion was measured to be about 2ppb. It was also shown that the probe has high selectivity for copper (II) ion and good anti-interference ability against other transition metal ions. The herein reported very simple and reliable fluorescence probe could be employed for copper (II) ion detection in many aspects.
    Talanta 08/2014; 126:185-90.
  • [Show abstract] [Hide abstract]
    ABSTRACT: An aptamer-based quartz crystal microbalance (QCM) biosensor was developed for the selective and sensitive detection of leukemia cells. In this strategy, aminophenylboronic acid-modified gold nanoparticles (APBA-AuNPs) which could bind to cell membrane were used for the labeling of cells followed by silver enhancement, through which significant signal amplification was achieved. Both the QCM and fluorescence microscopy results manifested the selectivity of the sensor designed. A good linear relationship between the frequency response and cell concentration over the range of 2×10(3)-1×10(5)cells/mL was obtained, with a detection limit of 1160cells/mL. This approach provides a simple, rapid, and economical method for leukemia cell analysis which might have great potential for further use.
    Talanta 08/2014; 126:130-5.
  • [Show abstract] [Hide abstract]
    ABSTRACT: An enantioselective high performance liquid chromatographic method with diode array detection (HPLC-DAD) was developed and validated for the determination of etodolac enantiomers in tablets and human plasma. Enantiomeric separation was achieved on a Kromasil Cellucoat chiral column (250 mm × 4.6 mm i.d., 5 μm particle size) using a mobile phase consisting of hexane: isopropanol: triflouroacetic acid (90:10:0.1 v/v/v) at a flow rate of 1.0 mL min-1. The chromatographic system enables the separation of the two enantiomers and the internal standard within a cycle time of 8 min. The resolution between the two enantiomers was 4.25 and the resolution between each enantiomer and the internal standard was more than 2.0. Detection was carried out at 274 nm, and the purity assessment was performed using a photodiode array detector. Solid phase extraction technique using C-18 cartridge was applied to extract the analytes from the plasma samples, and the percentage recovery was more than 95% for the lower quantification limit. The method has been validated with respect to selectivity, linearity, accuracy and precision, robustness, limit of detection and limit of quantification. The validation acceptance criteria were met in all cases. The linearity range for the determination of each enantiomer in human plasma was 0.4-30.0 μg mL-1 and the limits of quantification of R-etodolac and S-etodolac were 0.20 and 0.19 μg mL-1, respectively. The validated method was successfully applied to the determination of etodolac enantiomers in tablets and to a comparative pharmacokinetic study of the two enantiomers after the administration of 300 mg single oral dose etodolac racemate tablets to twelve healthy volunteers.
    Talanta 07/2014;
  • Elena Tobolkina, Liang Qiao, Christophe Roussel, Hubert Girault
    [Show abstract] [Hide abstract]
    ABSTRACT: Standard addition strips were prepared for the quantitative determination of caffeine in different beverages by electrostatic spray ionisation mass spectrometry (ESTASIMS). The gist of this approach is to dry spots of caffeine solutions with different concentrations on a polymer strip, then to deposit a drop of sample mixed with an internal standard, here theobromine on each spot and to measure the mass spectrometry signals of caffeine and theobromine by ESTASI-MS. This strip approach is very convenient and provides quantitative analyses as accurate as the classical standard addition method by MS or liquid chromatography.
    Talanta 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We designed a turn-on fluorescence assay for glyphosate based on the fluorescence resonance energy transfer (FRET) between negatively charged CdTe quantum dots capped with thioglycolic acid (TGA-CdTe-QDs) and positively charged gold nanoparticles stabilized with cysteamine (CS-AuNPs). Oppositely charged TGA-CdTe-QDs and CS-AuNPs can form FRET donor-acceptor assemblies due to electrostatic interactions, which effectively quench the fluorescence intensity of TGA-CdTe-QDs. The presence of glyphosate could induce the aggregation of CS-AuNPs through electrostatic interactions, resulting in the fluorescence recovery of the quenched QDs. This FRET-based method has been successfully utilized to detect glyphosate in apples with satisfactory results. The detection limit for glyphosate was 9.8ng/kg (3σ), with the linear range of 0.02-2.0μg/kg. The attractive sensitivity was obtained due to the efficient FRET and the superior fluorescence properties of QDs. The proposed method is a promising approach for rapid screening of glyphosate in real samples.
    Talanta 07/2014; 125:385-92.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A highly sensitive method for single-molecule quantitative detection of human IgG is presented by the employment of a new fluorescent nanolabel. In this method, fluorescent nanolabels were assembled by inserting SYBR Green I into DNA tetrahedron nanostructure. The bio-nanolabels were attached to the streptavidin-antihuman antibody by a specific reaction between biotin and streptavidin. The antibody was combined with the target antigen, human IgG, which was immobilized on the silanized glass subtrate surface. Finally, epi-fluorescence microscopy (EFM) coupled with an electron multiplying charge-coupled device was employed for fluorescence imaging. The fluorescent spots corresponding to single protein molecule on images were counted and further used for the quantitative detection. It was found that the new nanolabel shows good photostability, biocompatiblity and exhibits no blinking compared to traditional labels like fluorescence dyes and quantum dot (QDs). In addition, the number of fluorescence spots on the images has a linear relationship with the concentration of human IgG in the range of 3.0×10(-14) to 1.0×10(-12)molL(-1). What is more, this method showed an excellent specificity and a low matrix effect.
    Talanta 07/2014; 125:393-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometric quantification of phosphopeptides is a challenge due to the ion suppression effect of highly abundant non-phosphorylated peptides in complex samples such as serum. Several strategies for relative quantification of serum phosphopeptides based on MS have been developed, but the power of relative quantities was limited when making direct comparisons between two groups of samples or acting as a clinical examination index. Herein, we describe an MS absolute quantification strategy combined with Titania Coated Magnetic Hollow Mesoporous Silica Microspheres (TiO2/MHMSM) enrichment and stable isotopic acetyl labeling for phosphopeptides in human serum. Four endogenous serum phosphopeptides generated by degradation of fibrinogen were identified by LC-ESI-MS/MS following TiO2/MHMSM enrichment. The ESI-MS signal intensity ratios of the four phosphopeptide standards labeled with N-acetoxy-H3-succinimide (H3-NAS) and N-acetoxy-D3-succinimide (D3-NAS), following TiO2/MHMSM capture are linearly correlated with the molar ratios of the "light" to "heavy" phosphopeptides over the range of 0.1-4 with an r(2) of up to 0.998 and a slope of close to 1. The recovery of the four phosphopeptides spiked at low, medium and high levels in human sera were 98.4-111.9% with RSDs ranging 2.0-10.1%. The absolute quantification of the phosphopeptides in serum samples of 20 healthy persons and 20 gastric cancer patients by the developed method demonstrated that 3 out of the 4 phosphopeptides showed remarkable variation in serum level between healthy and cancer groups, and the phosphopeptide DpSGEGDFLAEGGGVR is significantly down-regulated in the serum of patients, being a potential biomarker for gastric cancer diagnosis.
    Talanta 07/2014; 125:411-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, label-free silicon quantum dots (SiQDs) were used as a novel fluorescence probe for the sensitive and selective detection of Cu(2+). The fluorescence of the SiQDs was effectively quenched by H2O2 from the reaction of ascorbic acid with O2, and hydroxyl radicals from Fenton reaction between H2O2 and Cu(+). The fluorescence intensity of SiQDs was quenched about 25% in 15min after the addition of H2O2 (1mM). While the SiQDs was incubated with AA (1mM) and Cu(2+) (1µM) under the same conditions, the fluorescence intensity of SiQDs decreased about 55%. Obviously, the recycling of Cu(2+) in the test system may lead to a dramatical decrease in the fluorescence of SiQDs. Under the optimized experimental conditions, the rate of fluorescence quenching of SiQDs was linearly dependent on the Cu(2+) concentration ranging from 25 to 600nM with the limit of detection as low as 8nM, which was much lower than that of existing methods. Moreover, the probe was successfully applied to the determination of Cu(2+) in different environmental water samples and human hair.
    Talanta 07/2014; 125:372-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new headspace solid-phase micro-extraction (HS-SPME) method followed by gas chromatography with pulsed flame photometric detection (GC-PFPD) analysis has been developed for the simultaneous determination of 11 organotin compounds, including methyl-, butyl-, phenyl- and octyltin derivates, in human urine. The methodology has been validated by the analysis of urine samples fortified with all analytes at different concentration levels, and recovery rates above 87% and relative precisions between 2% and 7% were obtained. Additionally, an experimental-design approach has been used to model the storage stability of organotin compounds in human urine, demonstrating that organotins are highly degraded in this medium, although their stability is satisfactory during the first 4 days of storage at 4°C and pH=4. Finally, this methodology was applied to urine samples collected from harbor workers exposed to antifouling paints; methyl- and butyltins were detected, confirming human exposure in this type of work environment.
    Talanta 07/2014; 125:196-203.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A kind of dealloyed nanoporous gold (NPG)/ultrathin CuO film nanohybrid for non-enzymatic glucose sensing has been prepared by a simple, in-situ, time-saving and controllable two-step electrodeposition. The three-dimensional and bicontinuous nanoporous structure of the nanocomposites have been characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM), and the electrochemical tests have been estimated by cyclic voltammetry and single potential step chronoamperometry (SPSC). The optimal NPG/CuO electrode exhibits great electrocatalytic activity towards glucose oxidation and also shows obvious linear response to glucose up to 12mM with a high sensitivity of 374.0µAcm(-2)mM(-1) and a good detection limit of 2.8µM (S/N=3), as well as strong tolerance against chloride poisoning and interference of ascorbic acid and uric acid.
    Talanta 07/2014; 125:366-71.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have described alternatives to the BOD5 standard method, with substantial decreases in incubation time observed. However, most of these have not maintained the features that make the BOD5 assay so relevant - a high level of substrate bio-oxidation and use of wastewater treatment plant (WWTP) sludge as the biocatalyst. Two recently described ferricyanide-mediated (FM)-BOD assays, one for trade wastes and one for WWTP influents and treated effluents, satisfy these criteria and were investigated further here for their suitability for use with diverse biocatalysts. Both FM-BOD assays responded proportionately to increasing substrate concentration with sludges from 11 different WWTPs and temporally (months to years) using sludges from a single WWTP, confirming the broad applicability of both assays. Sludges from four WWTPs were selected as biocatalysts for each FM-BOD assay to compare FM-BOD equivalent values with BOD5 (three different sludge seeds) measurements for 12 real wastewater samples (six per assay). Strong and significant relationships were established for both FM-BOD assays. This study has demonstrated that sludge sourced from many WWTPs may be used as the biocatalyst in either FM-BOD assay, as it is in the BOD5 assay. The industry potential of these findings is substantial given the widespread use of the BOD5 assay, the dramatically decreased incubation period (3-6h) and the superior analytical range of both assays compared to the standard BOD5 assay.
    Talanta 07/2014; 125:293-300.

Related Journals