Mechanisms of ageing and development

Publisher: Elsevier

Journal description

Current impact factor: 3.40

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.397
2013 Impact Factor 3.51
2012 Impact Factor 3.264
2011 Impact Factor 3.439
2010 Impact Factor 4.857
2009 Impact Factor 4.179
2008 Impact Factor 3.915
2007 Impact Factor 4.308
2006 Impact Factor 3.846
2005 Impact Factor 2.812
2004 Impact Factor 2.866
2003 Impact Factor 3.214
2002 Impact Factor 2.867
2001 Impact Factor 1.841
2000 Impact Factor 1.897
1999 Impact Factor 1.788
1998 Impact Factor 1.583
1997 Impact Factor 1.143
1996 Impact Factor 0.89
1995 Impact Factor 1.182
1994 Impact Factor 1.124
1993 Impact Factor 1.349
1992 Impact Factor 1.571

Impact factor over time

Impact factor

Additional details

5-year impact 3.75
Cited half-life 9.40
Immediacy index 0.77
Eigenfactor 0.01
Article influence 1.06
ISSN 1872-6216

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The SKN-1/Nrf transcription factors are master regulators of oxidative stress responses and are emerging as important determinants of longevity. We previously identified a protein named WDR-23 as a direct repressor of SKN-1 in C. elegans. Loss of wdr-23 influences stress resistance, longevity, development, and reproduction, but it is unknown if WDR-23 influences development and reproduction solely through SKN-1 and the mechanisms by which SKN-1 promotes stress resistance and longevity are poorly defined. Here, we characterize phenotypes of wdr-23 and skn-1 manipulation and explore the role of glutathione. We provide evidence that diverse wdr-23 phenotypes are dependent on SKN-1, that beneficial and detrimental phenotypes of wdr-23 and skn-1 can be partially decoupled, and that SKN-1 activation delays degenerative tissue changes during aging. We also show that total glutathione levels are substantially elevated when the wdr-23/skn-1 pathway is activated and that skn-1 is required for preserving this cellular antioxidant during stress and aging. Alternatively, total glutathione was not elevated in worms with reduced insulin/IGF-1-like signaling or dietary restriction suggesting that SKN-1 ensures longevity via different mechanisms under these conditions. Lastly, genetic interaction data revise our understanding of which skn-1 variants are required for longevity during dietary restriction. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 06/2015; 149. DOI:10.1016/j.mad.2015.06.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cartilage injuries are a major concern in the field of orthopedics. They occur following trauma, as well as from a variety of pathological conditions including Osteoarthritis (OA). Although cartilage does not exhibit robust endogenous repair, it has been demonstrated that modulating the activity of p21 can increase the regenerative abilities of cartilage in vitro and in vivo. Since the synovial membrane is abundant with mesenchymal progenitor cells (MPCs) capable of differentiating into cartilage both in vitro and in vivo, we examined if p21 expression levels varied between MPCs derived from normal vs. OA knee joints. Analysis of p21 at the mRNA and protein levels within normal and OA MPCs demonstrated differential levels of expression between these two groups, with OA MPCs having higher p21 expression levels. The higher levels of p21 in OA MPCs are also correlated with a decreased chondrogenic differentiation capacity and synovial inflammation, however, there was no evidence of senescence in the OA cells. The results of this study suggest that cell cycle regulation in MPCs may be altered in OA and that modulation of this pathway may have therapeutic potential once the mechanism by which this regulates stem/progenitor cells is better understood. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 05/2015; 149. DOI:10.1016/j.mad.2015.05.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is a cellular process with many facets, some of which are currently undergoing a paradigm change. It is the case of "mitochondrial theory of ageing", which, interestingly, has been found lately to cross paths with another ageing dysfunctional process - intracellular signalling - in an unexpected point (or place) - caveolae. The latter represent membrane microdomains altered in senescent cells, scaffolded by proteins modified (posttranslational or as expression) with ageing. An important determinant of these alterations is oxidative stress, through increased production of reactive oxygen species that originate at mitochondrial site. Spanning from physical contact points, to shared structural proteins and similar function domains, caveolae and mitochondria might have more in common than originally thought. By reviewing recent data on oxidative stress impact on caveolae and caveolins, as well as possible interactions between caveolae and mitochondria, we propose a hypothesis for senescence-related involvement of caveolins. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 05/2015; DOI:10.1016/j.mad.2015.04.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 05/2015; 146-148. DOI:10.1016/j.mad.2015.05.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connexin43 (Cx43) is critical for maintaining electrical conduction across atrial muscle. During progressive ageing atrial conduction slows associating with increasing susceptibility to arrhythmias. Changes in Cx43 protein expression, or its phosphorylation status, can instigate changes in the conduction of the cardiac action potential. This study investigated whether increased levels of activated c-jun N-terminal kinase (JNK) is responsible for the decline of Cx43 during ageing. Right atria from guinea pigs aged between 1 day and 38 months of age were examined. The area of the intercalated disc increased with age concurrent with a 75% decline in C43 protein expression. An age-dependent increase in activated-JNK correlated with a rise in phosphorylated Cx43, but also slowing of action potential conduction velocity across the atria from 0.38±0.01m/s at 1 month of age to 0.30±0.01m/s at 38 months. The JNK activator anisomycin increased activated JNK in myocytes and reduced Cx43 protein expression simulating ageing The JNK inhibitor SP600125, was found to eradicate almost all trace of Cx43 protein. We conclude that in vivo activation of JNK increases with age leading to the loss of Cx43 protein resulting in impaired conduction and contributing to the increasing risk of atrial arrhythmias with advancing age. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 05/2015; 291. DOI:10.1016/j.mad.2015.05.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA damage is the prime activator of the enzyme poly(ADP-ribose) polymerase1 (PARP-1) whose overactivation has been proven to be associated with the pathogenesis of numerous central nervous system disorders such as ischemia, neuroinflammation and neurodegenerative diseases. Under oxidative stress conditions PARP-1 activity increases, leading to an accumulation of ADP-ribose polymers and NAD(+) depletion, that induces energy crisis and finally cell death. This review aims to explain the contribution of PARP-1 in neurodegenerative diseases, focusing on Alzheimer's and Parkinson's disease, to stimulate further studies on this issue and thereby engage a new perspective regarding the design of possible therapeutic agents or the identification of biomarkers. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 04/2015; 146. DOI:10.1016/j.mad.2015.04.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Though defective genome maintenance and DNA repair have long been know to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1(-/-)) mouse. The majority of these mice die shortly after birth. However, the ones that survive exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1(-/-) mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1(-/-) mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1(-/-) mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 04/2015; 146. DOI:10.1016/j.mad.2015.03.012