Radiological Physics and Technology Journal Impact Factor & Information

Publisher: Springer Verlag

Journal description

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
ISSN 1865-0341
OCLC 212414506
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Contrast-enhanced CT employs a standard uniphasic single-injection method (SIM), wherein administration is based on two parameters: the iodine administration rate (mgI/s) and the injection duration (s). However, as the SIM uses a fixed iodine administration rate, only a uniform contrast enhancement can be achieved with this method. The iodine administration rate can be increased only by increasing the iodine dose or shortening the injection duration, and no arbitrary adjustments can be made to the peak enhancement characteristics of the time-enhancement curves (TECs) at the fixed injection parameters used in the SIM. To address this problem, we developed a variable injection method (VIM) with a new parameter, the variation factor (VF), to adjust the TECs. A phantom study with the VIM indicated that arbitrary adjustments to the iodine administration rate could be made without changing the injection duration or increasing the iodine load. In our study, VFs of 0.3 and 0.5, which showed earlier achievement of peak enhancements, showed better temporal separation between arterial vasculature and parenchyma or the venous vasculature than that obtained with the SIM. The higher peak enhancement provided by the VF of 0.3 was also considered to improve the contrast in qualitative diagnostic examinations. A VF of 0.5 increased the duration of the enhancement and was considered to produce stable enhancement of contrast in vascular investigations. The VF is now an essential parameter, and the VIM is useful as a reasonable contrast method that may contribute to both improved visualization and improvement in the accuracy of morphologic diagnosis.
    Radiological Physics and Technology 05/2015; DOI:10.1007/s12194-015-0314-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our aim in this study was to clarify the effects of respiratory-gated PET in the evaluation of lung cancer according to the (18)F-FDG uptake in an orthotopic transplantation mouse model. We created such a model, and we performed PET/CT. The mice were divided into two groups according to tumor volume: a small-tumor group (<20 mm(3)) and a large-tumor group (>20 mm(3)). We reconstructed the following conditions based on list-mode data: non-gated (3D) images and gated (4D) images, divided based on the respiratory cycle (expiration phase, stable phase, and inspiration phase). We calculated the maximum standardized uptake values (SUVmax) in each phase. We used the % difference [= (4D SUVmax - 3D SUVmax)/3D PET SUVmax × 100 (%)] to evaluate the differences in the 4D SUVmax and 3D SUVmax. The 4D SUVmax values were significantly higher than the 3D SUVmax, regardless of the tumor size. The % difference for the small tumors was greater than that for the large tumors, and it was highest in the stable phase. We conclude that the SUVmax in the stable phase under respiratory-gated PET are the most reliable. The SUVmax observed under non-gated PET are considered to be more frequently underestimated in cases involving small tumors than in those involving large tumors. In the chronologic study evaluating the time course of tumor development, the size of the tumor is small in early stage, and respiratory-gated PET is effective in reducing the underestimation of such tumors caused by respiratory motion.
    Radiological Physics and Technology 04/2015; DOI:10.1007/s12194-015-0316-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.
    Radiological Physics and Technology 04/2015; DOI:10.1007/s12194-015-0315-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: During examinations and/or treatment, a dentist in the examination room needs to view images with a proper display system. However, they cannot operate the image display system by hands, because dentists always wear gloves to be kept their hands away from unsanitized materials. Therefore, we developed a new image operating system that uses a motion sensor. We used the Leap motion sensor technique to read the hand movements of a dentist. We programmed the system using C++ to enable various movements of the display system, i.e., click, double click, drag, and drop. Thus, dentists with their gloves on in the examination room can control dental and panoramic images on the image display system intuitively and quickly with movement of their hands only. We investigated the time required with the conventional method using a mouse and with the new method using the finger operation. The average operation time with the finger method was significantly shorter than that with the mouse method. This motion sensor method, with appropriate training for finger movements, can provide a better operating performance than the conventional mouse method.
    Radiological Physics and Technology 04/2015; DOI:10.1007/s12194-015-0313-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.
    Radiological Physics and Technology 04/2015; DOI:10.1007/s12194-015-0312-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to validate the accuracy of normal databases (NDBs) with respect to variable injected doses and acquisition times by use of three-dimensional stereotactic surface projections (3D-SSP) in N-isopropyl-p-[123I]-iodoamphetamine (I-123-IMP) brain perfusion images. We constructed NDBs based on brain SPECT images obtained from 29 healthy volunteers. Each NDB was rebuilt under simulated unique conditions by use of dynamic acquisition datasets and comprised injected doses (222, 167, and 111 MBq) and acquisition times (30, 20, and 15 min). We selected seven of 29 datasets derived from the volunteers to simulate patients' data (PD). The simulated PD were designed to include regions of hypoperfusion. The study comprised protocol A (same conditions for PD and NDB) and protocol B (mismatched conditions for PD and NDB). We used 3D-SSP to compare with the Z score and detection error. The average Z scores were decreased significantly in protocol A [PD (High)-NDB (High) vs. PD (Low)-NDB (Low); PD (30 m)-NDB (30 m) vs. PD (15 m)-NDB (15 m) and PD (20 m)-NDB (20 m)].The average Z scores of PD (High) and PD (Medium) with NDB (High) did not differ significantly in protocol B, whereas all others were decreased significantly. The error of detection increased 6.65 % (protocol A) and 32.05 % (protocol B). The Z scores were specific to the injected dose and acquisition time used in 3D-SSP studies, and the calculated Z scores were affected by mismatched injected doses and acquisition times between PD and selected NDBs.
    Radiological Physics and Technology 03/2015; DOI:10.1007/s12194-015-0311-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our aim in this study was to calculate Monte Carlo-based phantom scatter corrections of various radiochromic films for different solid phantoms for high-energy brachytherapy sources. Brachytherapy sources (60)Co, (137)Cs, (192)Ir, and (169)Yb and radiochromic films EBT, EBT2 (lot 020609 and lot 031109), RTQA, XRT, XRQA, and HS were investigated in this study. The solid phantom materials investigated were PMMA (polymethylmethacrylate), polystyrene, solid water, virtual water, plastic water, RW1, RW3, A150, and WE210. Monte Carlo-based user codes DOSRZnrc and FLURZnrc of the EGSnrc code system were employed in the present work. For the (60)Co source, the polystyrene, plastic water, solid water, virtual water, RW1, RW3, and WE210 phantoms were water equivalent for the investigated films, but showed distance-dependent values for XRT and XRQA films. For the (137)Cs and (192)Ir sources, the solid water, virtual water, RW1, RW3, and WE210 phantoms were water equivalent for the investigated films, but showed distance-dependent values for XRT and XRQA films. For these sources, the remaining phantoms showed distance-dependent values for all of the films investigated. For the (169)Yb source, all of the investigated phantoms showed distance-dependent values for the investigated films. This study suggests that radiochromic films demonstrate distance-dependent values, but the degree of dependence is related to the types of solid phantom and film. Hence, for brachytherapy dosimetry involving radiochromic films and solid phantom materials, phantom scatter corrections need to be applied.
    Radiological Physics and Technology 03/2015; DOI:10.1007/s12194-015-0310-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muscle proton magnetic resonance spectroscopy (MRS) has been developed for non-invasive measurement of intramyocellular lipid (IMCL) levels. The majority of previous studies measuring IMCL with MRS have been performed on the calf muscle. The appearance of muscle MRS is influenced by bulk magnetic susceptibility and residual dipolar couplings, which depend on the angle between the muscle fibers and the main magnetic field. Our objective in this study was to evaluate the effect of ankle flexion and of the pennation angle on IMCL quantification in the calf muscle using proton MRS. The subjects comprised ten healthy male volunteers. In proton MRS, the ankle flexion angle was changed, and the pennation angle was measured from the tibialis anterior (TA) and the medial gastrocnemius (MG), respectively. We considered the relationship between the quantification of IMCL with (1)H MRS and the pennation angle by ankle flexion angle. The pennation angle of the TA and MG changed with the ankle flexion angle. The IMCL on the TA decreased significantly with plantar flexion (p < 0.05). However, the IMCL on the MG demonstrated no significant difference. The MR spectrum and IMCL quantitation changed with the pennation angle. Therefore, when spectra of individual subjects in longitudinal studies or between subjects are compared in cross-sectional studies, the foot position or calf muscle orientation must be considered.
    Radiological Physics and Technology 02/2015; DOI:10.1007/s12194-015-0309-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-ray CT projection data often include components with frequencies that are markedly higher than the pixel Nyquist frequency f PN, which is determined by the pixel size. Noise components higher than f PN are folded back into a region lower than f PN through the backprojection process, thereby creating aliased noise. With clinical CT scanners, we evaluated the aliased noise using an aliasing prevention measure, band-limiting processing (BLP), which suppresses frequency components higher than f PN in the projection data. Indices we used to evaluate improvement by BLP were the noise power spectrum (NPS), modulation transfer function (MTF), signal-to-noise-ratio (SNR) spectrum, matched filter SNR (MF SNR), and two-alternative forced-choice (2-AFC) test. With BLP, the NPS was decreased not only beyond f PN, but also within f PN. The same level of MTF was maintained as that without BLP within f PN. No remarkable reduction in spatial resolution was observed. The SNR spectrum and the MF SNR of the BLP image nearly agreed with those of an ideal state without aliased noise. A notable improvement in the visuoperceptual image quality by BLP was recognized with a reconstruction field of view (FOV) of more than 45 cm. We then applied BLP to clinical data and confirmed that significant aliased noise of a large FOV image was removed without notable side effects. The results showed that at least some CTs suffering from aliased noise can be improved by proper band-limiting.
    Radiological Physics and Technology 01/2015; DOI:10.1007/s12194-015-0306-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: For improvement of three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) image quality in the neck, fat-subtracted MRA by use of the two-point Dixon technique was compared with conventional fat-suppressed MRA techniques. Three different types of neck 3D-TOF-MRA were obtained [minimum echo time (TE) (1.9 ms), opposed-phase TE (3.4 ms), and chemical shift selective fat suppression (CHESS) (TE = 1.9 ms)] on five volunteers at 3.0 T. MRA was obtained with subtraction of fat-only images (produced by a two-point Dixon sequence) from minimum-TE MRA images, and compared with other fat-suppressed MRA images. Fat-subtracted MRA demonstrated uniform fat suppression compared with other techniques. The mean vessel-to-fat contrast in fat-subtracted MRA was significantly higher (p < 0.01) than in other MRA images (minimum-TE: 0.137 ± 0.086, opposed-phase TE: 0.268 ± 0.102, CHESS: 0.307 ± 0.052, fat-subtracted: 0.965 ± 0.101). The mean vessel-to-muscle contrast in opposed-phase TE MRA was significantly lower (p < 0.01) than in other MRA images (minimum-TE: 0.526 ± 0.036, opposed-phase TE: 0.419 ± 0.188, CHESS: 0.511 ± 0.023, fat-subtracted: 0.573 ± 0.016). Fat-subtracted MRA by use of the two-point Dixon technique improves the image quality of neck MRA. This technique would be a useful method for MRA, especially in areas with inhomogeneous magnetic fields, such as the neck.
    Radiological Physics and Technology 01/2015; DOI:10.1007/s12194-015-0307-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our purpose in this study was to evaluate the clinical usefulness of a new skyline-view imaging technique for axial projection of the patella with use of the anterior border of the patella and tibial tuberosity as position indicators. Our database consisted of pairs of axial images of the patella of the same patients, obtained with use of conventional and new techniques for the radiographic diagnosis of knee-joint diseases. A total of 118 pairs of knee images were obtained from 103 patients ranging in age from 16 to 86 years (mean age 49.7 years). The patellar axial positioning errors were determined in each of the images obtained with the two techniques. The relative error according to the patellar tilt was determined from each of the axial images of the patellas of the same patients obtained with the conventional and new techniques for the radiographic diagnosis of knee-joint diseases. The patellar axial positioning error was 0.40 with the conventional technique, whereas that with the new technique was significantly different at 0.30. This clinical study confirmed that the new skyline-view imaging technique, which uses the anterior border of the patella and the tibial tuberosity as position markers that can be confirmed by palpation, provides more accurate axial images than the conventional imaging technique.
    Radiological Physics and Technology 01/2015; DOI:10.1007/s12194-014-0305-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accuracy of gantry rotation times of less than 300 ms has been assessed for two "state-of-the art" MDCT systems. The rotation time was measured at selected nominal rotation times (275 and 280 ms) with a solid-state detector; Unfors Xi probe. The detector was positioned on the inner bottom of the gantry bore. Because a pair of two successive radiation peaks is necessary for determination of the rotation time, the radiation detection was performed with the helical scan mode of operation. Upon completion of the data acquisition, we determined the peak times with the Unfors Xi View software program to obtain the rotation time. The means and standard deviations of the measured rotation times were 275.3 ± 0.5 and 285.1 ± 0.4 ms, respectively. The inaccuracy of the rotation time was approximately 5 ms at most, which was comparable to that previously reported for slower rotation times.
    Radiological Physics and Technology 11/2014; 8(1). DOI:10.1007/s12194-014-0302-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our aim in this study was to obtain noninvasively more detailed information on perfusion and diffusion in vertebral bone marrow. We analyzed two diffusion components using a biexponential function. Eleven healthy volunteers were examined. By a 1.5-T MRI, we performed single-shot diffusion magnetic resonance imaging to acquire diffusion-weighted images (DWIs) with multiple b values. We determined perfusion-related diffusion and true diffusion coefficients (D* and D), the fraction of the perfusion-related diffusion component (F), and the apparent diffusion coefficient (ADC) in the lumbar vertebral body. Then, we compared these diffusion parameters with the bone mineral density (BMD) obtained with dual-energy X-ray absorptiometry. Moreover, the fat fraction (FF) of the bone marrow was calculated by use of double gradient-echo images with and without spectral adiabatic inversion recovery in the same subject. The BMD showed a significant positive correlation with D*, whereas there was no significant correlation between the other diffusion parameters and BMD. There was a negative correlation between the D or ADC and FF, although no correlation was found between D* or F and FF. Diffusion analysis with a biexponential function made it possible to obtain detailed information on bone perfusion and diffusion in healthy young volunteers.
    Radiological Physics and Technology 11/2014; 8(1). DOI:10.1007/s12194-014-0301-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.
    Radiological Physics and Technology 11/2014; 8(1). DOI:10.1007/s12194-014-0300-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.
    Radiological Physics and Technology 10/2014; 8(1). DOI:10.1007/s12194-014-0298-6
  • Radiological Physics and Technology 10/2014; 8(1). DOI:10.1007/s12194-014-0292-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conventional diagnostic X-ray units are used for radiographic imaging in several countries. As a part of our quality control procedures, we recorded entrance surface air kerma, tube voltage, and half-value layer measurements for four diagnostic X-ray tubes over a 108 week course. The entrance surface air kerma for one of the X-ray tubes suddenly declined in the 107th week, and the filament burned out 1 week later. We retrospectively reviewed these data and observed that the entrance surface air kerma of the failing tube had increased as a function of elapsed time. The slopes for these four X-ray units were calculated, and we observed that the slope of the failing tube was higher than that of the other three tubes (P < 0.001). Monitoring of the fluctuation in the entrance surface air kerma would be valuable for predicting the residual life expectancy of X-ray tubes.
    Radiological Physics and Technology 10/2014; 8(1). DOI:10.1007/s12194-014-0297-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our purpose in this study was to evaluate the performance of four-dimensional computed tomography (4D-CBCT) and to optimize the acquisition parameters. We evaluated the relationship between the acquisition parameters of 4D-CBCT and the accuracy of the target motion trajectory using a dynamic thorax phantom. The target motion was created three dimensionally using target sizes of 2 and 3 cm, respiratory cycles of 4 and 8 s, and amplitudes of 1 and 2 cm. The 4D-CBCT data were acquired under two detector configurations: "small mode" and "medium mode". The projection data acquired with scan times ranging from 1 to 4 min were sorted into 2, 5, 10, and 15 phase bins. The accuracy of the measured target motion trajectories was evaluated by means of the root mean square error (RMSE) from the setup values. For the respiratory cycle of 4 s, the measured trajectories were within 2 mm of the setup values for all acquisition times and target sizes. Similarly, the errors for the respiratory cycle of 8 s were <4 mm. When we used 10 or more phase bins, the measured trajectory errors were within 2 mm of the setup values. The trajectory errors for the two detector configurations showed similar trends. The acquisition times for achieving an RMSE of 1 mm for target sizes of 2 and 3 cm were 2 and 1 min, respectively, for respiratory cycles of 4 s. The results obtained in this study enable optimization of the acquisition parameters for target size, respiratory cycle, and desired measurement accuracy.
    Radiological Physics and Technology 10/2014; 8(1). DOI:10.1007/s12194-014-0296-8