Biofabrication Journal Impact Factor & Information

Publisher: Institute of Physics (Great Britain), IOP Publishing

Journal description

Current impact factor: 4.29

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 4.289
2013 Impact Factor 4.302
2012 Impact Factor 3.705
2011 Impact Factor 3.48
2010 Impact Factor 1.857

Impact factor over time

Impact factor

Additional details

5-year impact 4.75
Cited half-life 3.10
Immediacy index 0.68
Eigenfactor 0.00
Article influence 1.20
ISSN 1758-5090
OCLC 316801915
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

IOP Publishing

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print on author's personal website, repository or arXiv.
    • Pre-print can not be updated after submission
    • Post-print on author's personal website immediately
    • Post-print on institutional repository, subject-based repository, PubMed Central or third party eprint servers after 12 months embargo
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged with citation
    • Must link to publisher version with DOI
    • Set statements to accompany different versions (see policy)
    • This policy is an exception to the default policies of 'IOP Publishing'
  • Classification
    ​ green

Publications in this journal

  • Biofabrication 09/2015; 7(4):045001. DOI:10.1088/1758-5090/7/4/045001
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3D tissue models are increasingly being implemented for drug and toxicology testing. However, the creation of tissue-engineered constructs for this purpose often relies on complex biofabrication techniques that are time consuming, expensive, and difficult to scale up. Here, we describe a strategy for realizing multiple tissue constructs in a parallel microfluidic platform using an approach that is simple and can be easily scaled for high-throughput formats. Liver cells mixed with a UV-crosslinkable hydrogel solution are introduced into parallel channels of a sealed microfluidic device and photopatterned to produce stable tissue constructs in situ. The remaining uncrosslinked material is washed away, leaving the structures in place. By using a hydrogel that specifically mimics the properties of the natural extracellular matrix, we closely emulate native tissue, resulting in constructs that remain stable and functional in the device during a 7-day culture time course under recirculating media flow. As proof of principle for toxicology analysis, we expose the constructs to ethyl alcohol (0-500 mM) and show that the cell viability and the secretion of urea and albumin decrease with increasing alcohol exposure, while markers for cell damage increase.
    Biofabrication 09/2015; 7(3):031001. DOI:10.1088/1758-5090/7/3/031001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiphoton fabrication is a powerful technique for three-dimensional (3D) printing of structures at the microscale. Many polymers and proteins have been successfully structured and patterned using this method. Type I collagen comprises a large part of the extracellular matrix for most tissue types and is a widely used cellular scaffold material for tissue engineering. Current methods for creating collagen tissue scaffolds do not allow control of local geometry on a cellular scale. This means the environment experienced by cells may be made up of the native material but unrelated to native cellular-scale structure. In this study, we present a novel method to allow multiphoton crosslinking of type I collagen with flavin mononucleotide photosensitizer. The method detailed allows full 3D printing of crosslinked structures made from unmodified type I collagen and uses only demonstrated biocompatible materials. Resolution of 1 μm for both standing lines and high-aspect ratio gaps between structures is demonstrated and complex 3D structures are fabricated. This study demonstrates a means for 3D printing with one of the most widely used tissue scaffold materials. High-resolution, 3D control of the fabrication of collagen scaffolds will facilitate higher fidelity recreation of the native extracellular environment for engineered tissues.
    Biofabrication 09/2015; 7(3):035007. DOI:10.1088/1758-5090/7/3/035007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hierarchical structures, constituted by polymeric nano and microfibers, have been considered promising scaffolds for tissue engineering strategies, mainly because they mimic, in some way, the complexity and nanoscale detail observed in real organs. The chondrogenic potential of these scaffolds has been previously demonstrated, but their osteogenic potential is not yet corroborated. In order to assess if a hierarchical structure, with nanoscale details incorporated, is an improved scaffold for bone tissue regeneration, we evaluate cell adhesion, proliferation, and osteogenic differentiation of human Wharton's jelly derived stem cells (hWJSCs), seeded into hierarchical fibrous scaffolds. Biological data corroborates that hierarchical fibrous scaffolds show an enhanced cell entrapment when compared to rapid prototyped scaffolds without nanofibers. Furthermore, upregulation of bone specific genes and calcium phosphate deposition confirms the successful osteogenic differentiation of hWJSCs on these scaffolds. These results support our hypothesis that a scaffold with hierarchical structure, in conjugation with hWJSCs, represents a possible feasible strategy for bone tissue engineering applications.
    Biofabrication 09/2015; 7(3):035009. DOI:10.1088/1758-5090/7/3/035009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young’s moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.
    Biofabrication 09/2015; 7(3). DOI:10.1088/1758-5090/7/3/035004
  • [Show abstract] [Hide abstract]
    ABSTRACT: The approach of whole organ decellularization is rapidly becoming more widespread within the tissue engineering community. Today it is well known that the effects of decellularization protocols may vary with the particular type of treated tissue. However, there are no methods known to individualize decellularization protocols while automatically ensuring a standard level of quality to minimize adverse effects on the resulting extracellular matrix. Here we follow this idea by introducing two novel components into the current practice. First, a non-invasive method for online monitoring of resulting fluid dynamical characteristics of the coronary system is demonstrated for application during the perfusion decellularization of whole hearts. Second, the observation of the underlying rheological characteristics of the perfusates is employed to detect ongoing progress and maturation of the decellularization process. Measured data were contrasted to the respective release of specific cellular components. We demonstrate rheological measurements to be capable of detecting cellular debris along with a discriminative capture of DNA and protein ratios. We demonstrate that this perfusate biomass is well correlated to the biomass loss in the extracellular matrix produced by decellularization. The appearance of biomass components in the perfusates could specifically reflect the appearance of fluid dynamical characteristics that we monitored during the decellularization process. As rheological measuring of perfusate samples can be done within minutes, without any time-consuming preparation steps, we predict this to be a promising novel analytic strategy to control decellularization protocols, in time, by the actual conditions of the processed organ.
    Biofabrication 09/2015; 7(3):035008. DOI:10.1088/1758-5090/7/3/035008
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are many techniques for preparing two-dimensional aligned fibril matrices. However, the critical problem associated with these techniques is the destruction of the native structure (e.g., the α-helix) of the proteins. Moreover, most of these techniques cannot create a three-dimensional (3D), aligned reconstituted collagen fibril matrix in one step. In this study, we used a simple device composed of a pneumatic membrane that generates a tunable vibration frequency to apply physical stimulation to fabricate a 3D, aligned collagen fibril matrix with the characteristic D-period structure of collagen in one step. Using second harmonic images, we demonstrated that the aligned, reconstituted collagen fibrils preserve the native collagen D-period structure. The average angular deviation of fibril alignment was reduced to 25.01 ± 4.2° compared with the 39.7 ± 2.19° of alignment observed for the randomly distributed fibril matrix. In addition, the ultimate tensile strength of the aligned matrix when force was applied in the direction parallel to the fiber orientation was higher than that of the randomly oriented matrix. The aligned reconstituted collagen fibril matrix also enhanced the expression of smoothelin (a specific marker of contractile phenotype) of thoracic aortic smooth muscle cell (A7r5) relative to the randomly distributed collagen fibril matrix.
    Biofabrication 06/2015; 7(2). DOI:10.1088/1758-5090/7/2/025004