Gut Pathogens

Publisher: International Society for Genomic and Evolutionary Microbiology

Description

  • Impact factor
    2.74
  • 5-year impact
    2.85
  • Cited half-life
    2.70
  • Immediacy index
    0.13
  • Eigenfactor
    0.00
  • Article influence
    0.80
  • ISSN
    1757-4749
  • OCLC
    318907797
  • Material type
    Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • Gut Pathogens 04/2014; 6(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium difficile is the leading cause of infectious diarrhea in humans and responsible for large outbreaks of enteritis in neonatal pigs in both North America and Europe. Disease caused by C. difficile typically occurs during antibiotic therapy and its emergence over the past 40 years is linked with the widespread use of broad-spectrum antibiotics in both human and veterinary medicine. We sequenced the genome of Clostridium difficile 5.3 using the Illumina Nextera XT and MiSeq technologies. Assembly of the sequence data reconstructed a 4,009,318 bp genome in 27 scaffolds with an N50 of 786 kbp. The genome has extensive similarity to other sequenced C. difficile genomes, but also has several genes that are potentially related to virulence and pathogenicity that are not present in the reference C. difficile strain. Genome sequencing of human and animal isolates is needed to understand the molecular events driving the emergence of C. difficile as a gastrointestinal pathogen of humans and food animals and to better define its zoonotic potential.
    Gut Pathogens 02/2014; 6(1):4.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vibrio cholerae is a human intestinal pathogen and V. cholerae of the O139 serogroups are responsible for the current epidemic cholera in China. In this work, we reported the whole genome sequencing of a V. cholerae O139 strain E306 isolated from a cholera patient in the 306th Hospital of PLA, Beijing, China. We obtained the draft genome of V. cholerae O139 strain E306 with a length of 4,161,908 bps and mean G + C content of 47.7%. Phylogenetic analysis indicated that strain E306 was very close to another O139 strain, V. cholerae MO10, which was isolated during the cholera outbreak in India and Bangladesh. However, unlike MO10, strain E306 harbors the El Tor-specific RS1 element with no pre-CTX prophage (VSK), very similar to those found in some V. cholerae O1 strains. In addition, strain E306 contains a SXT/R391 family integrative conjugative element (ICE) similar to ICEVchInd4 and SXT MO10, and it carries more antibiotic resistance genes than other closest neighbors. The genome sequence of the V. cholerae O139 strain E306 and its comparative analysis with other V. cholerae strains we present here will provide important information for a better understanding of the pathogenicity of V. cholerae and their molecular mechanisms to adapt different environments.
    Gut Pathogens 02/2014; 6(1):3.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Probiotics are commonly used as feed additive to substitute antibiotic as growth promoter in animal farming. Probiotic consists of lactic acid bacteria (LAB), which enhance the growth and health of the animal. Probiotic also have higher possibility to become pathogenic bacteria that may carry antibiotic resistant gene that can be transmitted to other LAB species. The aim of this study was to identify the LAB species in the faeces of broiler chicken and to determine the prevalence of antibiotic resistant in LAB of broiler chicken. Sixty faeces samples were collected from wet markets located in Klang Valley of Malaysia for the isolation of LAB using de-Mann Rogosa Sharpe medium. Thirteen species of LAB were obtained in this study and the identification of LAB was performed by using API test kit on the basis of carbohydrate fermentation profile. Antibiotic susceptibility assay was then carried out to determine the prevalence of LAB antibiotic resistance. Lactococcus lactis subsp lactis was found in nine out of sixty faecal samples. Lactobacillus paracasei was the second common LAB species isolated from chicken faecal. No significant difference (P > 0.05) was found between the occurrence of Lactobacillus brevis, Lactobacillus curvatus, L. plantarum, Leuconostoc lactis mesenteroides subsp mesenteroides / dectranium and Pediococcus pentosaceus isolated from 5 different locations. Most of the isolated LAB was resistant to antibiotic and high variability of the antibiotic resistance was observed among the LAB against 15 types of antibiotics. Penicillin, amoxicillin, chloramphenicol, and ampicillin had significant higher (P< 0.05) inhibitory zone than nalidixic acid, gentamycin, sulphamethoxazole, kanamycin, and streptomycin. Many species of LAB were isolated from the faecal samples of broiler chicken that resistance to the common antibiotics used in the farm. The development of resistant against antibiotics in LAB can be attributed to the long term exposure of antibiotic as growth promoter and therapeutic agents. Thus, it is essential to advise farmer the safety measure of antibiotic application in animal farming. Additionally, the supplementation of probiotic in animal feeding also needs more attention and close monitoring.
    Gut Pathogens 01/2014; 6(1):1.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clarithromycin (CLR) is the key drug in eradication therapy of Helicobacter pylori (H. pylori) infection, and widespread use of CLR has led to an increase in primary CLR-resistant H. pylori. The known mechanism of CLR resistance has been established in A2146G and A2147G mutations in the 23S rRNA gene, but evidence of the involvement of other genetic mechanisms is lacking. Using the MiSeq platform, whole-genome sequencing of the 19 clinical strains and the reference strain ATCC26695 was performed to identify single nucleotide variants (SNVs) of multi-drug resistant efflux pump genes in the CLR-resistant phenotype.
    Gut Pathogens 01/2014; 6:27.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli are a frequent cause of urinary tract infections (UTI) and are thought to have a foodborne origin. E. coli with sequence type 127 (ST127) are emerging pathogens increasingly implicated as a cause of urinary tract infections (UTI) globally. A ST127 isolate (2009-46) resistant to ampicillin and trimethoprim was recovered from the urine of a 56 year old patient with a UTI from a hospital in Sydney, Australia and was characterised here.
    Gut Pathogens 01/2014; 6:32.

Related Journals