Microbial Biotechnology Journal Impact Factor & Information

Publisher: Society for Applied Microbiology, Wiley Open Access

Journal description

Current impact factor: 3.21

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2011 Impact Factor 2.534

Additional details

5-year impact 3.27
Cited half-life 2.70
Immediacy index 0.87
Eigenfactor 0.00
Article influence 0.96
ISSN 1751-7915
OCLC 229135858
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Wiley Open Access

  • Pre-print
    • Archiving status unclear
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Creative Commons Attribution License
    • Authors retain copyright
    • On open access repositories and any website
    • Hosting site must incorporate publisher-supplied amendments or retractions issued
    • Published source must be acknowledged including article DOI
    • Articles published prior to 14 August 2012, are published under a Creative Commons Attribution Non-Commercial License or another License
    • Publisher's version/PDF may be used
    • All titles are open access journals
    • 'Wiley Open Access' is an imprint of 'Wiley'
  • Classification
    ​ blue

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene sequences annotated as proteins of unknown or non-specific function and hypothetical proteins account for a large fraction of most genomes. In the strictly anaerobic and organohalide respiring Dehalococcoides mccartyi, this lack of annotation plagues almost half the genome. Using a combination of bioinformatics analyses and genome-wide metabolic modelling, new or more specific annotations were proposed for about 80 of these poorly annotated genes in previous investigations of D. mccartyi metabolism. Herein, we report the experimental validation of the proposed reannotations for two such genes (KB1_0495 and KB1_0553) from D. mccartyi strains in the KB-1 community. KB1_0495 or DmIDH was originally annotated as an NAD+-dependent isocitrate dehydrogenase, but biochemical assays revealed its activity primarily with NADP+ as a cofactor. KB1_0553, also denoted as DmPMI, was originally annotated as a hypothetical protein/sugar isomerase domain protein. We previously proposed that it was a bifunctional phosphoglucose isomerase/phosphomannose isomerase, but only phosphomannose isomerase activity was identified and confirmed experimentally. Further bioinformatics analyses of these two protein sequences suggest their affiliation to potentially novel enzyme families within their respective larger enzyme super families.
    Microbial Biotechnology 10/2015; DOI:10.1111/1751-7915.12315
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lactobacillus johnsonii FI9785 has an eps gene cluster which is required for the biosynthesis of homopolymeric exopolysaccharides (EPS)-1 and heteropolymeric EPS-2 as a capsular layer. The first gene of the cluster, epsA, is the putative transcriptional regulator. In this study we showed the crucial role of epsA in EPS biosynthesis by demonstrating that deletion of epsA resulted in complete loss of both EPS-1 and EPS-2 on the cell surface. Plasmid complementation of the epsA gene fully restored EPS production, as confirmed by transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, this complementation resulted in a twofold increase in the expression levels of this gene, which almost doubled amounts of EPS production in comparison with the wild-type strain. Analysis of EPS by NMR showed an increased ratio of the heteropolysaccharide to homopolysaccharide in the complemented strain and allowed identification of the acetylated residue in EPS-2 as the (1,4)-linked βGlcp unit, with the acetyl group located at O-6. These findings indicate that epsA is a positive regulator of EPS production and that EPS production can be manipulated by altering its expression.
    Microbial Biotechnology 09/2015; DOI:10.1111/1751-7915.12314
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent reports have suggested that the establishment of industrially relevant enzyme collections from environmental genomes has become a routine procedure. Across the studies assessed, a mean number of approximately 44 active clones were obtained in an average size of approximately 53 000 clones tested using naïve screening protocols. This number could be significantly increased in shorter times when novel metagenome enzyme sequences obtained by direct sequencing are selected and subjected to high-throughput expression for subsequent production and characterization. The pre-screening of clone libraries by naïve screens followed by the pyrosequencing of the inserts allowed for a 106-fold increase in the success rate of identifying genes encoding enzymes of interest. However, a much longer time, usually on the order of years, is needed from the time of enzyme identification to the establishment of an industrial process. If the hit frequency for the identification of enzymes performing at high turnover rates under real application conditions could be increased while still covering a high natural diversity, the very expensive and time-consuming enzyme optimization phase would likely be significantly shortened. At this point, it is important to review the current knowledge about the success of fine-tuned naïve- and sequence-based screening protocols for enzyme selection and to describe the environments worldwide that have already been subjected to enzyme screen programmes through metagenomic tools. Here, we provide such estimations and suggest the current challenges and future actions needed before environmental enzymes can be successfully introduced into the market. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
    Microbial Biotechnology 09/2015; DOI:10.1111/1751-7915.12309
  • [Show abstract] [Hide abstract]
    ABSTRACT: No abstract is available for this article.
    Microbial Biotechnology 09/2015; 8(5). DOI:10.1111/1751-7915.12313
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to evaluate the probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Four Enterococcus isolates showed high cholesterol removal ability in media were identified as Enterococcus durans (KLDS 6.0930 and 6.0933) and Enterococcus faecalis (KLDS 6.0934 and 6.0935) by 16S rRNA and pheS gene sequences, respectively, and selected for further evaluation. In order to assess the probiotic potential and safety of these strains, the property of four Enterococcus strains were examined, including acid and bile tolerance, adherence to Caco-2 cells and antibiotics susceptibility. All four strains showed potential cholesterol assimilation, de-conjugation of bile salts and/or cholesterol degradation to remove cholesterol in vitro. In addition, the potential effect of E. durans KLDS 6.0930 on serum cholesterol levels was evaluated in Sprague-Dawley rats. After 4 weeks administration, compared with rats fed a high-cholesterol diet without lactic acid bacteria supplementation, there was a significant (P < 0.05) decrease in the total cholesterol and low-density lipoprotein cholesterol levels in the serum of rats treated with KLDS 6.0930. Furthermore, total bile acid level in the feces was significantly (P < 0.05) increased after KLDS 6.0930 administration. These observations suggested that the strain E. durans KLDS 6.0930 may be used in the future as a good candidate for lowering human serum cholesterol levels. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
    Microbial Biotechnology 07/2015; DOI:10.1111/1751-7915.12306
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a new bacterial strain having a high ability to produce γ-aminobutyric acid (GABA) was isolated from naturally fermented scallop solution and was identified as Enterococcus avium. To the best of our knowledge, this is the first study to prove that E. avium possesses glutamate decarboxylase activity. The strain was then mutagenized with UV radiation and was designated as E. avium 9184. Scallop solution was used as the culture medium to produce GABA. A two-stage fermentation strategy was applied to accumulate GABA. In the first stage, cell growth was regulated. Optimum conditions for cell growth were pH, 6.5; temperature, 37°C; and glucose concentration, 10 g·L(-1) . This produced a maximum dry cell mass of 2.10 g·L(-1) . In the second stage, GABA formation was regulated. GABA concentration reached 3.71 g·L(-1) at 96 h pH 6.0, 37°C and initial l-monosodium glutamate concentration of 10 g·L(-1) . Thus, compared with traditional one-stage fermentation, the two-stage fermentation significantly increased GABA accumulation. These results provide preliminary data to produce GABA using E. avium and also provide a new approach to process and utilize shellfish. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
    Microbial Biotechnology 07/2015; DOI:10.1111/1751-7915.12301
  • Source
    Microbial Biotechnology 07/2015; 8(4):621. DOI:10.1111/1751-7915.12293_3
  • Source
    Microbial Biotechnology 07/2015; 8(4):621-2. DOI:10.1111/1751-7915.12293_4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
    Microbial Biotechnology 07/2015; 8(4):726-38. DOI:10.1111/1751-7915.12296
  • Source
    Microbial Biotechnology 07/2015; 8(4):617-21. DOI:10.1111/1751-7915.12293_2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. However, related studies in the ecologically and bioelectrochemically important strain Shewanella oneidensis are limited. Here, we show that SO_3166, a member of the higher eukaryotes and prokaryotes nucleotide-binding (HEPN) superfamily, strongly inhibited cell growth in S. oneidensis and Escherichia coli. SO_3165, a putative minimal nucleotidyltransferase (MNT), neutralized the toxicity of SO_3166. Gene SO_3165 lies upstream of SO_3166, and they are co-transcribed. Moreover, the SO_3165 and SO_3166 proteins interact with each other directly in vivo, and antitoxin SO_3165 bound to the promoter of the TA operon and repressed its activity. Finally, the conserved Rx4-6H domain in HEPN family was identified in SO_3166. Mutating either the R or H abolished SO_3166 toxicity, confirming that Rx4-6H domain is critical for SO_3166 activity. Taken together, these results demonstrate that SO_3166 and SO_3165 in S. oneidensis form a typical type II TA pair. This TA pair plays a critical role in regulating bacterial functions because its disruption led to impaired cell motility in S. oneidensis. Thus, we demonstrated for the first time that HEPN-MNT can function as a TA system, thereby providing important insights into the understanding of the function and regulation of HEPNs and MNTs in prokaryotes. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
    Microbial Biotechnology 06/2015; DOI:10.1111/1751-7915.12294