Carbon Balance and Management Journal Impact Factor & Information

Publisher: BioMed Central Ltd, BioMed Central

Journal description

Carbon Balance and Management will encompass all aspects of research results aimed at a comprehensive, policy relevant understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Researchers carrying out interdisciplinary studies in the field need a medium to convey the results of their research across disciplinary boundaries. This must be done in 'real-time' to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views. Researchers also need a peer-review process that will help them to build a new generation of scientists trained in the highly interdisciplinary topics of the carbon-climate-human system.

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
Website Carbon Balance and Management website
Other titles CBM
ISSN 1750-0680
OCLC 70640931
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    ​ green

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.
    Carbon Balance and Management 12/2015; 10(1):8. DOI:10.1186/s13021-015-0018-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon. Thirteen percent of total forest area in the West Cascades ecoregion was disturbed during the reference interval (1991-2010). The disturbance regime was dominated by harvesting (59 % of all area disturbed), with lower levels of fire (23 %), and pest/pathogen mortality (18 %). Ecoregion total Net Ecosystem Production was positive (a carbon sink) in all years, with greater carbon uptake in relatively cool years. Localized carbon source areas were associated with recent harvests and fire. Net Ecosystem Exchange (including direct fire emissions) showed greater interannual variation and became negative (a source) in the highest fire years. Net Ecosystem Carbon Balance (i.e. change in carbon stocks) was more positive on public that private forestland, because of a lower disturbance rate, and more positive in the decade of the 1990s than in the warmer and drier 2000s because of lower net ecosystem production and higher direct fire emissions in the 2000s. Despite recurrent disturbances, the West Cascades ecoregion has maintained a positive carbon balance in recent decades. The high degree of spatial and temporal resolution in these simulations permits improved attribution of regional carbon sources and sinks.
    Carbon Balance and Management 12/2015; 10(1):12. DOI:10.1186/s13021-015-0022-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.
    Carbon Balance and Management 12/2015; 10:18. DOI:10.1186/s13021-015-0029-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The forestry and wood products industries play a significant role in CO2 emissions reduction by increasing carbon stocks in living forest biomass and wood products. Moreover, wood can substitute for fossil fuels. Different methods can be used to assess the impact of regional forestry and wood products industries on regional CO2 emissions. This article considers three of those methods and combines them into a multi-tiered approach. The multi-tiered approach proposed in this article combines: 1) a Kyoto-Protocol-oriented method focused on changes in CO2 emissions resulting from regional industrial production, 2) a consumer-oriented method focused on changes in CO2 emissions resulting from regional consumption, and 3) a value-creation-oriented method focused on changes in CO2 emissions resulting from forest management and wood usage strategies. North Rhine-Westphalia is both a typical German state and an example of a region where each of these three methods yields different results. It serves as a test case with which to illustrate the advantages of the proposed approach. This case study argues that the choice of assessment methods is essential when developing and evaluating a strategy for reducing CO2 emissions. Emissions can be reduced through various social and economic processes. Since none of the assessment methods considered above is suitable for all of these processes, only a multi-tiered approach may ensure that strategy development results in an optimal emissions reduction strategy.
    Carbon Balance and Management 12/2015; 10(1):4. DOI:10.1186/s13021-015-0014-9
  • Carbon Balance and Management 12/2015; 10(6). DOI:10.1186/s13021-015-0016-7
  • Carbon Balance and Management 01/2015;