Nature Photonics (NAT PHOTONICS )

Publisher: Nature Publishing Group

Description

  • Impact factor
    27.25
    Show impact factor history
     
    Impact factor
  • 5-year impact
    31.57
  • Cited half-life
    3.20
  • Immediacy index
    7.49
  • Eigenfactor
    0.11
  • Article influence
    15.82
  • Other titles
    Nature photonics (Online)
  • ISSN
    1749-4885
  • OCLC
    78160603
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Nature Publishing Group

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 6 months embargo
  • Conditions
    • Authors retain copyright
    • Published source must be acknowledged and DOI cited
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • On author's personal website and institutional repository
    • If funding agency rules apply, authors may post authors version to their relevant funding body's archive, 6 months after publication
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between light and magnetism is considered a promising route to the development of energy-efficient data storage technologies. To date, however, ultrafast optical magnetization control has been limited to a binary process, whereby light in either of two polarization states generates (writes) or adopts (reads) a magnetic bit carrying either a positive or negative magnetization. Here, we report how the fundamental limitation of just two states can be overcome, allowing an arbitrary optical polarization state to be written magnetically. The effect is demonstrated using a three-sublattice antiferromagnet–hexagonal YMnO3. Its three magnetic oscillation eigenmodes are selectively excited by the three polarization eigenstates of the light. The magnetic oscillation state is then transferred back into the polarization state of an optical probe pulse, thus completing an arbitrary optomagnonic write–read cycle.
    Nature Photonics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated micro-cavitation bubbles (μCBs) without requiring flow chambers or microfluidics. These μCBs expose adherent cells to a microTsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1mm(2). We demonstrate microTsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation resulting in Ca(2+) release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microTsunami-induced Ca(2+) signalling by introducing a known inhibitor to this pathway. The imaging of Ca(2+) signalling, and its modulation by exogenous molecules, demonstrates the capacity to initiate and assess cellular mechanosignalling in real-time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry.
    Nature Photonics 09/2014; 8:710-715.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.
    Nature Photonics 07/2014; 8(7):550-555.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Solid-state quantum emitters have shown strong potential for applications in quantum information, but the spectral inhomogeneity of these emitters poses a significant challenge. We address this issue in a cavity–quantum dot system by demonstrating cavity-stimulated Raman spin flip emission. This process avoids populating the excited state of the emitter and generates a photon that is Raman shifted from the laser and enhanced by the cavity. The emission is spectrally narrow and tunable over a range of at least 125 GHz, which is two orders of magnitude greater than the natural linewidth. We obtain the regime in which the Raman emission is spin dependent, which couples the photon to a long-lived electron spin qubit. This process can enable an efficient, tunable source of indistinguishable photons and deterministic entanglement of distant spin qubits in a photonic-crystal quantum network.
    Nature Photonics 05/2014;
  • Nature Photonics 04/2014; 8(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The applications of surface-emitting lasers, in particular vertical-cavity surface-emitting lasers (VCSELs), are currently being extended to various low-power fields including communications and interconnections. However, the fundamental difficulties in increasing their output power by more than several milliwatts while maintaining single-mode operation prevent their application in high-power fields such as material processing, laser medicine and nonlinear optics, despite their advantageous properties of circular beams, the absence of catastrophic optical damage, and their suitability for two-dimensional integration. Here, we demonstrate watt-class high-power, single-mode operation by a two-dimensional photonic-crystal surface-emitting laser under room-temperature, continuous-wave conditions. The two-dimensional band-edge resonant effect of a photonic crystal formed by metal-organic chemical vapour deposition enables a 1,000 times broader coherent-oscillation area, which results in a high beam quality of M2 <= 1.1, narrowing the focus spot by two orders of magnitude compared to VCSELs. Our demonstration promises to realize innovative high-power applications for surface-emitting lasers.
    Nature Photonics 04/2014; 8(5).
  • Nature Photonics 04/2014; 8(5).
  • Nature Photonics 04/2014; 8(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Greenberger-Horne-Zeilinger (GHZ) states play a significant role in fundamental tests of quantum mechanics and are one of the central resources of quantum-enhanced high-precision metrology, fault-tolerant quantum computing and distributed quantum networks. However, in a noisy environment, entanglement becomes fragile as the particle number increases. Recently, a concatenated GHZ (C-GHZ) state, which retains the advantages of conventional GHZ states but is more robust in a noisy environment, was proposed. Here, we experimentally prepare a three-logical-qubit C-GHZ state. By characterizing the dynamics of entanglement quality of the C-GHZ state under simple collective noise, we demonstrate that the C-GHZ state is more robust than the conventional GHZ state. Our work provides an essential tool for quantum-enhanced measurement and enables a new route to prepare and manipulate macroscopic entanglement. Our result is also useful for linear-optical quantum computation schemes whose building blocks are GHZ-type states.
    Nature Photonics 04/2014; 8(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Luminescent solar concentrators are cost-effective complements to semiconductor photovoltaics that can boost the output of solar cells and allow for the integration of photovoltaic-active architectural elements into buildings (for example, photovoltaic windows). Colloidal quantum dots are attractive for use in luminescent solar concentrators, but their small Stokes shift results in reabsorption losses that hinder the realization of large-area devices. Here, we use ‘Stokes-shift-engineered’ CdSe/CdS quantum dots with giant shells (giant quantum dots) to realize luminescent solar concentrators without reabsorption losses for device dimensions up to tens of centimetres. Monte-Carlo simulations show a 100-fold increase in efficiency using giant quantum dots compared with core-only nanocrystals. We demonstrate the feasibility of this approach by using high-optical-quality quantum dot–polymethylmethacrylate nanocomposites fabricated using a modified industrial method that preserves the light-emitting properties of giant quantum dots upon incorporation into the polymer. Study of these luminescent solar concentrators yields optical efficiencies >10% and an effective concentration factor of 4.4. These results demonstrate the significant promise of Stokes-shift-engineered quantum dots for large-area luminescent solar concentrators.
    Nature Photonics 04/2014;
  • Nature Photonics 03/2014; 8(4).