Marine Mammal Science (Mar Mamm Sci)

Publisher: Wiley

Journal description

Published for the Society for Marine Mammalogy, Marine Mammal Science is a source of significant new findings on marine mammals resulting from original research on their form and function, evolution, systematics, physiology, biochemistry, behavior, population biology, life history, genetics, ecology and conservation. The journal features both original and review articles, notes, opinions and letters. It serves as a vital resource for anyone studying marine mammals.

Current impact factor: 1.82

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 1.82
2012 Impact Factor 2.128
2011 Impact Factor 1.611
2010 Impact Factor 1.463
2009 Impact Factor 1.526
2008 Impact Factor 1.787
2007 Impact Factor 1.432
2006 Impact Factor 1.235
2005 Impact Factor 1.103
2004 Impact Factor 1.177
2003 Impact Factor 1.083
2002 Impact Factor 0.867
2001 Impact Factor 1.121
2000 Impact Factor 0.833
1999 Impact Factor 0.965
1998 Impact Factor 0.706
1997 Impact Factor 0.543
1996 Impact Factor 0.402
1995 Impact Factor 0.632
1994 Impact Factor 0.62
1993 Impact Factor 0.706
1992 Impact Factor 0.586

Impact factor over time

Impact factor

Additional details

5-year impact 2.12
Cited half-life 9.20
Immediacy index 0.52
Eigenfactor 0.00
Article influence 0.68
Website Marine Mammal Science website
ISSN 1748-7692
OCLC 230770198
Material type Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • On a non-profit server
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification
    ​ yellow

Publications in this journal

  • Marine Mammal Science 07/2015; DOI:10.1111/mms.12248
  • [Show abstract] [Hide abstract]
    ABSTRACT: Given the expense and time required to monitor marine mammal populations effectively, approaches that fully exploit the resulting data certainly are warranted. We employed a two-step modeling approach to estimate key demographic parameters, including immigration, from aerial surveys of manatees (Trichechus manatus latirostris) in the Northwest management unit of Florida. Abundances of adults and calves were predicted by multivariate adaptive regression spline (MARS) models, after accounting for heterogeneous detection rates caused by variable environmental conditions. The resulting predictions were incorporated into a stage-structured, deterministic model that used an inverse method to estimate parameters with and without immigration. The model without immigration estimated mean survival probabilities of 0.966, 0.923, and 0.794 for adults, subadults and calves, respectively, with a per capita reproductive rate of 0.135. These parameter estimates yielded an overall mean population growth rate of approximately 1.037, which is comparable to rates from mark-recapture studies. When we added an immigration term that accounted for the greater slope in adult counts since 1999, as identified by the MARS model, the estimated per capita reproductive rate was 0.122, with survival probabilities for adults, subadults and calves of 0.926, 0.920, and 0.833, respectively. These rates were coupled with an estimated mean winter immigration rate corresponding to roughly 5.2% of the adult and subadult population. In this latter scenario, the number of manatees in the core population of the Northwest management unit was predicted to remain constant, with a population growth rate near one, and additional manatees counted during aerial surveys were deemed to be immigrants. While further studies could certainly expound on the potential effects of migrants on population indices, we present this first published immigration estimate for wintering manatees in northwest Florida.
    Marine Mammal Science 07/2015; DOI:10.1111/mms.12247
  • [Show abstract] [Hide abstract]
    ABSTRACT: We monitored the underwater behavior of botos (Inia geoffrensis) using stereo acoustic data loggers to observe their local habitat use and its diel changes at the Mamirauá Sustainable Development Reserve, Brazil. A-tags were set at five sites in three different habitat types: Lake (low current), Channel (middle current), and Junction (junction of two channels). The presence index during nighttime was significantly greater than during daytime in the Lake and Junction. Underwater movement was estimated from the changing pattern (trajectory) of the relative angle of the sound source from A-tags. A staying-type trajectory was dominant in the Lake, although the prevalence of moving-type trajectory increased at night. More than 80% of detected trajectories were the staying type in the Junction, while moving-type trajectories dominated in the Channel. The frequency of click trains was greatest in the Lake, followed by the Junction and Channels. The average interpulse interval, which reflects the mean target distance of echolocation, was shortest in the Lake, followed by the Junction and Channel. These results suggest that the botos used the Lake as their primary habitat for active behaviors like foraging, especially at night, and the Junction as their primary habitat for relatively inactive behaviors at night.
    Marine Mammal Science 07/2015; DOI:10.1111/mms.12252
  • [Show abstract] [Hide abstract]
    ABSTRACT: A commercially available fisheries sonar was mounted on an icebreaker and evaluated during an environmental baseline study in the Canadian Beaufort Sea, to determine the applicability of active acoustic monitoring (AAM) for marine mammal detection by comparing marine mammal observer (MMO) visual sightings and active acoustic detections. During 170 h of simultaneous MMO and AAM, 115 bowhead whales (Balaena mysticetus) and four beluga whales (Delphinapterus leucas) were visually sighted by MMOs, while 59 sonar detections of bowhead whales occurred using AAM. The fisheries sonar detected 92% of the cetaceans observed within 2,000 m. Additional observations of ringed seals (Pusa hispida) and bearded seals (Erignathus barbatus) were recorded both by MMOs and AAM. Comparative results indicate that a commercially available active acoustic system can consistently detect marine mammals within varying ranges dictated by water column properties. Shallow environments and strong pycnoclines currently present challenges to AAM.
    Marine Mammal Science 07/2015; DOI:10.1111/mms.12250
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tucuxi (Sotalia fluviatilis) is a small dolphin endemic to the Amazon River basin. Because the abundance and trends are currently unknown for the species, this study aimed to estimate its abundance in a lake system of the Central Amazon. A total of 10 two-day sampling periods were carried out from March to June of 2013 throughout a 13.5 km2 area in the Mamirauá Reserve. In the 104 encounters with the species, a minimum number of 389 dolphins were sighted and photographed, which allowed the positive identification of 49 individuals. Mark-recapture models were used to estimate an abundance of 119 individuals (95% CI = 105–150) (corrected for the proportion of identifiable individuals). This is the first estimation of S. fluviatilis abundance using mark-recapture analyses and, together with the photo-id catalog made available, provides a useful reference for future studies regarding tucuxi dolphins.
    Marine Mammal Science 07/2015; DOI:10.1111/mms.12254
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth in common bottlenose dolphins (Tursiops truncatus) was investigated through examination of sex-specific, ontogenetic changes in the mass of 38 discrete body compartments, utilizing stranded dolphins in good body condition (n = 145). Ontogenetic allometry and the body composition technique were used to quantitatively describe growth patterns. Although adult males were significantly larger than adult females in total body mass (TBM) and total length, overall patterns of growth were remarkably similar between sexes. The integument, locomotor muscle, and vertebral column together represented 50%–58% of TBM across all life history categories, although their relative contributions varied ontogenetically. Young dolphins invested the greatest percentage of TBM in integument, while locomotor muscle was the single largest body component in adults. In both sexes (1) most muscle groups displayed positive allometry, (2) most skeletal elements displayed negative allometric or isometric growth, (3) most abdominal viscera associated with digestion displayed positive allometry, and (4) the brain displayed negative allometric growth. Reproductive tissues exhibited the highest rates of growth in both sexes, and increased as a percentage of TBM with maturity. This study provides an integrated view of bottlenose dolphin growth and a quantitative baseline of body composition for future monitoring of this sentinel species of ecosystem health.
    Marine Mammal Science 07/2015; DOI:10.1111/mms.12253
  • Marine Mammal Science 07/2015; 31(3). DOI:10.1111/mms.12207
  • [Show abstract] [Hide abstract]
    ABSTRACT: The viability of healthy single stranded dolphins as immediate release candidates has received little attention. Responders have been reluctant to release lone delphinids due to their social needs, even when they pass the same health evaluations as mass stranded animals. This study tracked postrelease success of 34 relocated and released satellite tagged delphinids from single and mass strandings. Three postrelease survival parameters (transmission duration, swim speed, and daily distance) were examined to evaluate whether they differed among single stranded/single released (SS/SR), mass stranded/single released (MS/SR), or mass stranded/mass released (MS/MR) dolphin groups. Comparisons were also made between healthy and borderline release candidates. Satellite tags transmitted for a mean of 21.2 d (SD = 19.2, range = 1–79), daily distance traveled was 42.0 km/d (11.25, 20.96–70.72), and swim speed was 4.3 km/h (1.1, 2.15–8.54). Postrelease parameters did not differ between health status groups, however, SS/SR dolphins transmitted for a shorter mean duration than MS/MR and MS/SR groups. Postrelease vessel-based surveys confirmed conspecific group location for two healthy, MS/SR dolphins. Overall, these results support the potential to release healthy stranded single delphinids; however, further refinement of health assessment protocols for these challenging cases is needed.
    Marine Mammal Science 07/2015; DOI:10.1111/mms.12255