Expert Opinion on Drug Delivery

Publisher: Informa Healthcare

Journal description

Current impact factor: 4.12

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 4.116
2012 Impact Factor 4.869
2011 Impact Factor 4.896
2010 Impact Factor 4.482
2009 Impact Factor 3.345

Impact factor over time

Impact factor
Year

Additional details

5-year impact 5.13
Cited half-life 3.70
Immediacy index 0.50
Eigenfactor 0.01
Article influence 1.23
ISSN 1744-7593

Publisher details

Informa Healthcare

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • On author's personal website or institution website
    • Publisher copyright and source must be acknowledged
    • On a non-profit server
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • NIH funded authors may post articles to PubMed Central for release 12 months after publication
    • Wellcome Trust authors may deposit in Europe PMC after 6 months
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Oxidative stress has generally been recognized as an important factor in the pathogenesis of human diseases, making antioxidant therapy a plausible strategy to either prevent or treat human disorders. Yet so far, numerous antioxidant-based clinical trials aimed at developing clinically approved protocols have been disappointing and many reasons for their failure are being discussed, including the limited bioavailability of most antioxidants. To overcome the hurdles associated with the direct administration of antioxidant molecules, a variety of nanotechnology-based drug delivery systems are being developed. All the strategies currently being explored, however, appear in our opinion to underappreciate the crucial role reactive oxygen and nitrogen species (RO/NS) play in the regulation of the metabolome, as revealed by recent progress made in redox biology. Areas covered: We briefly review antioxidant-based clinical trials and discuss the functions of RO/NS as crucial intracellular messengers. We emphasize the probable existence of three distinct concentration levels of RO/NS: a physiological level reflecting their functions as messenger molecules, an elevated level crucial for activation of protective pathways and a toxic level causing oxidative damage to cellular components. Expert opinion: Site-specific, multifunctional nanodrug delivery systems able to sense the actual intracellular concentrations of RO/NS and release antioxidants accordingly in order to only neutralize the pathologic excess of RO/NS need to be developed.
    Expert Opinion on Drug Delivery 06/2015; DOI:10.1517/17425247.2015.1063611
  • [Show abstract] [Hide abstract]
    ABSTRACT: The top-down approach is frequently used for drug nanocrystal production. A large number of review papers have referred to the top-down approach in terms of process parameters such as stabilizer selection. However, a very important factor, that is, the influence of drug properties, has been not addressed so far. Areas covered: This review will first discuss different nanocrystal technologies in brief. The focus will be on reviewing the different drug properties such as solid state and particle morphology on the efficiency of particle size reduction during top-down processes. Furthermore, the drug properties in the final nanosuspensions are critical for drug dissolution velocity. Therefore, another focus is the characterization of drugs in obtained nanosuspension. Expert opinion: Drug physical properties play an important role in the production efficiency. The combinative technologies using modified drugs could significantly improve the performances of top-down processes. However, further understanding of the drug millability and homogenization will still be needed. In addition, a carefully established characterization system for nansuspension is essential.
    Expert Opinion on Drug Delivery 06/2015; DOI:10.1517/17425247.2015.1057566
  • [Show abstract] [Hide abstract]
    ABSTRACT: Active pharmaceutical ingredients (APIs) are evolving from low-molecular-weight drugs to peptide-, protein-, gene-, oligonucleotide- and cell-based drugs. Therefore, advanced pharmaceutical technologies are required to achieve manifestation of the drug efficacy, side effect reduction and the adequate dosage form design. Areas covered: In this review, the authors highlight the recent advances in drug delivery techniques utilizing cyclodextrins (CyDs), and cyclic oligosaccharides consisting of α-1,4-linked α-D-glucopyranose units, for various drugs described above. Especially, drug delivery system consisting of combination systems of CyDs and functional materials such as dendrimer, liposome and PEG are introduced. Furthermore, the utilities of CyDs as APIs have been also described. Expert opinion: To achieve the controlled release and/or targeting of low-molecular-weight drugs in systemic administration, the construction of novel CyDs and CyD the supramolecular system should be a useful approach because of the stable complexation of drugs with CyDs. In addition, the combination systems of CyDs and various carriers have the potential as advanced drug delivery systems for proteins and nucleic acids. Furthermore, CyDs have great potential as APIs for various diseases with few side effects, although the detailed mechanism, especially cellular uptake of CyDs, should be clarified.
    Expert Opinion on Drug Delivery 06/2015; DOI:10.1517/17425247.2015.1026893
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients with multiple sclerosis who have poor adherence to treatment have a higher risk of relapse than adherent patients. This study assessed adherence to, and effectiveness and convenience of, treatment with subcutaneous (sc) interferon (IFN) β-1a (Rebif®, Merck Serono SA) 44 or 22 μg three times weekly in patients with relapsing multiple sclerosis (RMS) using the RebiSmart® electronic, multidose, autoinjector for 1 year. European, multicentre, observational study among neurologists: inclusion criteria included RMS, Expanded Disability Status Scale score ≤ 6, sc IFN β-1a administered by RebiSmart for ≤ 6 weeks. The primary endpoint was cumulative adherence recorded by RebiSmart. The safety population included 912 patients, 77.4% (n = 823) of whom completed the Month-12 visit. Mean (± standard deviation) cumulative adherence was 97.1 ± 7.3% (n = 791). The most common reason for missed injection was 'forgot to inject' (37.0%). At Month 12/ED, 79.5% of patients were relapse-free. Of 353 patients who rated the convenience of the device, 68.3% found injecting 'very easy'. No unknown safety issues were detected. Patients with RMS self-injecting sc IFN β-1a with RebiSmart had excellent adherence at Month 12/ED, which was associated with good clinical outcomes and no unexpected safety issues. Patients rated RebiSmart as convenient and easy to use.
    Expert Opinion on Drug Delivery 06/2015; DOI:10.1517/17425247.2015.1057567
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory diseases remain a target for improved forms of inhalation therapy. However, there are neither regulatory preferences for one type of device over another, nor well-recognized guidelines. This guidance describes factors that should be considered to optimize the choice of delivery system. Areas covered: This article summarizes the different types of delivery systems with key technical and commercial considerations for selection. It highlights current market trends and opportunities for the future, based on the author's experience of more than 20 years in this field. Expert opinion: For a generic drug, low device cost favors a capsule dry powder inhaler (DPI) or a propellant-based metered-dose inhaler (pMDI). Novel particle engineering approaches may allow close matching to the innovator product performance. For novel drugs, most companies favor a bespoke DPI, adding patent protection and aiding brand recognition, despite being expensive to develop. Device features may add differentiation, but "no outcome, no income." Patient technique and adherence remain problematic, compounded by age, although accessories, including monitors, can help. There are few modern medicines available in nebulized form, so there is value in fast-tracking the nebulized formulations from Phase I studies through to market in parallel to the chosen inhaler.
    Expert Opinion on Drug Delivery 06/2015; DOI:10.1517/17425247.2015.1056148
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pressurised metered dose inhalers (pMDIs) are subject to rigorous physical and chemical stability tests during formulation. Due to the time and cost associated with product development studies, there is a need for online techniques to fast screen new formulations in terms of physical and chemical (physico-chemical) stability. The problem with achieving this is that pMDIs are by their definition, pressurised, making the direct observation of physico-chemical properties in situ difficult. Areas covered: This review highlights the characterisation tools that can enhance the product development process for pMDIs. Techniques investigated include: laser diffraction, Raman spectroscopy, isothermal ampoule calorimetry, titration calorimetry and gas perfusion calorimetry. The operational principles behind each technique are discussed and complemented with examples from the literature. Expert opinion: Laser diffraction is well placed to analyse real-time physical stability as a function of particle size; however, its use is restricted to suspension pMDIs. Raman spectroscopy can be potentially used to attain both suspension and solution pMDI spectra in real time; however, the majority of experiments are ex-valve chemical composition mapping. Calorimetry is an effective technique in capturing both chemical and physical degradations of APIs in real time but requires redevelopment to withstand pressure for the purposes of pMDI screening.
    Expert Opinion on Drug Delivery 06/2015; DOI:10.1517/17425247.2015.1046834
  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore the feasibility of coating irregular-shaped drug particles in a modified tangential spray fluidized bed processor (FS processor) and evaluate the coated particles for their coat uniformity and taste-masking efficiency. Paracetamol particles were coated to 20%, w/w weight gain using a taste-masking polymer insoluble in neutral and basic pH but soluble in acidic pH. In-process samples (5, 10 and 15%, w/w coat) and the resultant coated particles (20%, w/w coat) were collected to monitor the changes in their physicochemical attributes. After coating to 20%, w/w coat weight gain, the usable yield was 81% with minimal agglomeration (< 5%). Some aerodynamic modifications to particle shape and surface morphology were observed for the in-process samples with 5 and 10% coat compared with the uncoated particles. A 15%, w/w coat was optimal for inhibiting drug release in salivary pH with subsequent fast dissolution in simulated gastric pH. The FS processor shows promise for direct coating of irregular-shaped drug particles with wide size distribution. The coated particles with 15% coat were sufficiently taste masked and could be useful for further application in orally disintegrating tablet platforms.
    Expert Opinion on Drug Delivery 06/2015; DOI:10.1517/17425247.2015.1054278
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transdermal delivery of drugs has a number of advantages in comparison to other routes of administration. The mechanical properties of skin, however, impose a barrier to administration and so most compounds are administered using hypodermic needles and syringes. In order to overcome some of the issues associated with the use of needles, a variety of non-needle devices based on jet injection technology has been developed. Areas covered: Jet injection has been used primarily for vaccine administration but has also been used to deliver macromolecules such as hormones, monoclonal antibodies and nucleic acids. A critical component in the more recent success of jet injection technology has been the active control of pressure applied to the drug during the time course of injection. Expert opinion: Jet injection systems that are electronically controllable and reversible offer significant advantages over conventional injection systems. These devices can consistently create the high pressures and jet speeds necessary to penetrate tissue and then transition smoothly to a lower jet speed for delivery of the remainder of the desired dose. It seems likely that in the future this work will result in smart drug delivery systems incorporated into personal medical devices and medical robots for in-home disease management and healthcare.
    Expert Opinion on Drug Delivery 05/2015; DOI:10.1517/17425247.2015.1049531
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium carbonate (CaCO3) has broad biomedical utilizations owing to its availability, low cost, safety, biocompatibility, pH-sensitivity and slow biodegradability. Recently, there has been widespread interest in their application as drug delivery systems for different groups of drugs. Among them, CaCO3 nanoparticles have exhibited promising potential as drug carriers targeting cancer tissues and cells. The pH-dependent properties, alongside the potential to be functionalized with targeting agents give them the unique property that can be used in targeted delivery systems for anticancer drugs. Also, due to the slow degradation of CaCO3 matrices, these nanoparticles can be used as sustained release systems to retain drugs in cancer tissues for longer times after administration. Areas covered: Development of drug delivery carriers using CaCO3 nanoparticles has been reviewed. The current state of CaCO3 nanoparticles as cancer drug delivery systems with focus on their special properties like pH-sensitivity and biodegradability has also been evaluated. Expert opinion: According to our review, CaCO3 nanoparticles, owing to their special characteristics, will have a potential role in safe and efficient cancer treatment in future.
    Expert Opinion on Drug Delivery 05/2015; DOI:10.1517/17425247.2015.1049530
  • [Show abstract] [Hide abstract]
    ABSTRACT: A nanosuspension or nanocrystal suspension is a versatile formulation combining conventional and innovative features. It comprises 100% pure drug nanoparticles with sizes in the nano-scale range, generally stabilized by surfactants or polymers. Nanosuspensions are usually obtained in liquid media with bottom-up and top-down methods or by their combination. They have been designed to enhance the solubility, the dissolution rate and the bioavailability of drugs via various administration routes. Due to their small sizes, nanosuspensions can be also considered a drug delivery nanotechnology for the preparation of nanomedicine products. Areas covered: This review focuses on the state of the art of the nanocrystal-based formulation. It describes theory characteristics, design parameters, preparation methods, stability issues, as well as specific in vivo applications. Innovative strategies proposed to obtain nanomedicine formulation using nanocrystals are also reported. Expert opinion: Many drug nanodelivery systems have been developed to increase the bioavailability of drugs and to decrease adverse side effects, but few can be industrially manufactured. Nanocrystals can close this gap by combining traditional and innovative drug formulations. Indeed, they can be used in many pharmaceutical dosage forms as such, or developed as new nano-scaled products. Engineered surface nanocrystals have recently been proposed as a dual strategy for stability enhancement and targeting delivery of nanocrystals.
    Expert Opinion on Drug Delivery 05/2015; DOI:10.1517/17425247.2015.1043886
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carriers for controlled drug release offer many advantages compared with conventional dosage forms. Gelatin has been investigated extensively as a drug delivery carrier, due to its properties and history of safe use in a wide range of medical applications. Areas covered: Gelatin was shown to be versatile due to its intrinsic features that enable the design of different carrier systems, such as microparticles and nanoparticles, fibers and even hydrogels. Gelatin microparticles can serve as vehicles for cell amplification and for delivery of large bioactive molecules, whereas gelatin nanoparticles are better suited for intravenous delivery or for drug delivery to the brain. Gelatin fibers contain a high surface area-to-volume ratio, whereas gelatin hydrogels can trap molecules between the polymer's crosslink gaps, allowing these molecules to diffuse into the blood stream. Another interesting area is the combination of tissue bioadhesive-based gelatin with controlled drug release for pain management and wound healing. Expert opinion: The modification of gelatin and its combinations with other biomaterials have demonstrated the flexibility of these systems and can be employed for meeting the challenges of finding ideal carrier systems that enable specific, targeted and controlled release in response to demands in the body.
    Expert Opinion on Drug Delivery 05/2015; DOI:10.1517/17425247.2015.1037272
  • [Show abstract] [Hide abstract]
    ABSTRACT: To demonstrate, using human factors engineering (HFE), that a redesigned, pre-filled, ready-to-use, pre-asembled follitropin alfa pen can be used to administer prescribed follitropin alfa doses safely and accurately. A failure modes and effects analysis identified hazards and harms potentially caused by use errors; risk-control measures were implemented to ensure acceptable device use risk management. Participants were women with infertility, their significant others, and fertility nurse (FN) professionals. Preliminary testing included 'Instructions for Use' (IFU) and pre-validation studies. Validation studies used simulated injections in a representative use environment; participants received prior training on pen use. User performance in preliminary testing led to IFU revisions and a change to outer needle cap design to mitigate needle stick potential. In the first validation study (49 users, 343 simulated injections), in the FN group, one observed critical use error resulted in a device design modification and another in an IFU change. A second validation study tested the mitigation strategies; previously reported use errors were not repeated. Through an iterative process involving a series of studies, modifications were made to the pen design and IFU. Simulated-use testing demonstrated that the redesigned pen can be used to administer follitropin alfa effectively and safely.
    Expert Opinion on Drug Delivery 05/2015; 12(5):715-25. DOI:10.1517/17425247.2015.1033395
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: To demonstrate, using human factors engineering (HFE), that a redesigned, pre-filled, ready-to-use, pre-asembled follitropin alfa pen can be used to administer prescribed follitropin alfa doses safely and accurately.Methods: A failure modes and effects analysis identified hazards and harms potentially caused by use errors; risk-control measures were implemented to ensure acceptable device use risk management. Participants were women with infertility, their significant others, and fertility nurse (FN) professionals. Preliminary testing included ‘Instructions for Use’ (IFU) and pre-validation studies. Validation studies used simulated injections in a representative use environment; participants received prior training on pen use.Results: User performance in preliminary testing led to IFU revisions and a change to outer needle cap design to mitigate needle stick potential. In the first validation study (49 users, 343 simulated injections), in the FN group, one observed critical use error resulted in a device design modification and another in an IFU change. A second validation study tested the mitigation strategies; previously reported use errors were not repeated.Conclusions: Through an iterative process involving a series of studies, modifications were made to the pen design and IFU. Simulated-use testing demonstrated that the redesigned pen can be used to administer follitropin alfa effectively and safely.
    Expert Opinion on Drug Delivery 04/2015; 12(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Misregulation of reactive oxygen species and reactive nitrogen species by the body's antioxidant system results in oxidative stress, which is known to be associated with aging, and involved in various pathologies including cancer, neurodegenerative and cardiovascular diseases. A large variety of low-molecular-weight (LMW) antioxidant compounds and antioxidant enzymes have been proposed to alleviate oxidative stress, but their therapeutic efficacy is limited by their solubility, stability or bioavailability. In this respect, nanoscience-based systems are expected to provide more efficient mitigation of oxidative stress. Areas covered: The main nanoscience-based three-dimensional (3D) supramolecular assemblies, decorated with, or entrapping antioxidant compounds, or which possess intrinsic antioxidant activity are discussed and illustrated with recent examples. Assemblies with different architectures and sizes in the nanometer range serve: i) to deliver LMW antioxidant compounds or enzymes; ii) as antioxidant systems due to their intrinsic activity; and recently iii) to provide a confined space where catalytic antioxidant reactions take place in situ (nanoreactors and artificial organelles). A few insights into the role of antioxidants in mitigating oxidative stress caused by therapeutic compounds or drug carriers are also discussed. Expert opinion: Several challenges must still be overcome in the development of 3D supramolecular assemblies to efficiently fight oxidative stress. First, an improvement of the assemblies' properties and stability in biological conditions has to be addressed. Second, new systems based on the combination of biomolecules or mimics in supramolecular assemblies should provide multifunctionality, stimuli-responsiveness and targeting properties for a more efficient therapeutic effect. Third, comparative studies are necessary to evaluate these systems in a standardized manner both in vitro and in vivo.
    Expert Opinion on Drug Delivery 04/2015; DOI:10.1517/17425247.2015.1036738