Acta Crystallographica Section F Structural Biology and Crystallization Communications (ACTA CRYSTALLOGR F )

Publisher: International Union of Crystallography, International Union of Crystallography

Description

Acta Crystallographica Section F Structural Biology and Crystallization Communications aims to provide a home for communications on the crystallization and structure determination of biological macromolecules.

  • Impact factor
    0.55
    Show impact factor history
     
    Impact factor
  • 5-year impact
    0.49
  • Cited half-life
    3.50
  • Immediacy index
    0.22
  • Eigenfactor
    0.01
  • Article influence
    0.18
  • Website
    Acta Crystallographica Section F website
  • Other titles
    Acta crystallographica. Section F, Structural biology and crystallization communications, Structural biology and crystallization communications online, (IUCr) structural biology and crystallization communications online
  • ISSN
    1744-3091
  • OCLC
    56932079
  • Material type
    Document, Newspaper, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

International Union of Crystallography

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On author's personal web site, an employer's web site/repository, or free public servers in the subject area
    • Pre-print must acknowledge submission to journal
    • Encouraged to post publishers version (authorised electronic reprint )
    • Full bibliographic references to the article and journal
    • Other post-print versions can be archived via Paid Option
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: TamB is a recently described inner membrane protein that, together with its partner protein TamA, is required for the efficient secretion of a subset of autotransporter proteins in Gram-negative bacteria. In this study, the C-terminal DUF490963–1138 domain of TamB was overexpressed in Escherichia coli K-12, purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the primitive trigonal space group P3121, with unit-cell parameters a = b = 57.34, c = 220.74 Å, and diffracted to 2.1 Å resolution. Preliminary secondary-structure and X-ray diffraction analyses are reported. Two molecules are predicted to be present in the asymmetric unit. Experimental phasing using selenomethionine-labelled protein will be undertaken in the future.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 09/2014; 70(9):1272-1275.
  • [Show abstract] [Hide abstract]
    ABSTRACT: RsmI and RsmH are AdoMet-dependent methyltransferases that are responsible for the 2'-O-methylation and N(4)-methylation of C1402 of Escherichia coli 16S rRNA, respectively. Modification of this site has been found to play a role in fine-tuning the shape and function of the P-site to increase the decoding fidelity. It is interesting to study the mechanism by which C1402 can be methylated by both RsmI and RsmH. The crystal structure of RsmH in complex with AdoMet and cytidine has recently been determined and provided some implications for N(4)-methylation of this site. Here, the purification and crystallization of RsmI as well as its preliminary crystallographic analysis are reported. Co-crystallization of RsmI with AdoMet was carried out by the sitting-drop vapour-diffusion method and X-ray diffraction data were collected to 2.60 Å resolution on beamline 1W2B at BSRF. The crystal contained three molecules per asymmetric unit and belonged to space group C2, with unit-cell parameters a = 121.9, b = 152.5, c = 54.2 Å, β = 93.4°.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 09/2014; 70(Pt 9):1256-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examines the binding and chemical stability of the platinum hexahalides K2PtCl6, K2PtBr6 and K2PtI6 when soaked into pre-grown hen egg-white lysozyme (HEWL) crystals as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI3 complex bound to the N(δ) atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI6) or at two sites (PtBr6 and PtCl6). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable `objects'.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 09/2014; 70(Pt 9):1132-4.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 09/2014; 70(Pt 9):1135-42.
  • [Show abstract] [Hide abstract]
    ABSTRACT: VCP (valosin-containing protein; also known as p97) plays important roles in many biological processes including the ERAD (endoplasmic reticulum-associated degradation) pathway and its function is governed by binding partners. OTU1 (ovarian tumour domain-containing protein 1) is a recently discovered deubiquitinating enzyme that interacts directly with VCP in the ERAD pathway. In order to understand the interactions between the two proteins, the N-D1 domain of VCP and the UBXL domain of OTU1 were cloned, overexpressed, purified and crystallized. The crystals of the complex diffracted to 3.25 Å resolution and belonged to space group P21, with unit-cell parameters a = 165.45, b = 176.73, c = 165.59 Å, β = 120.095°. There are two molecules of the complex in the asymmetric unit with a Matthews coefficient of 2.62 Å(3) Da(-1) and a solvent content of 53%.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1087-1089.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellulosomes are massive cell-bound multienzyme complexes tethered by macromolecular scaffolds that coordinate the efforts of many anaerobic bacteria to hydrolyze plant cell-wall polysaccharides, which are a major untapped source of carbon and energy. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesin modules, located in the scaffold, and dockerin modules, found in the enzymes and other cellulosomal proteins. The proposed cellulosomal architecture for Ruminococcus flavefaciens strain FD-1 consists of a major scaffoldin (ScaB) that acts as the backbone to which other components attach. It has nine cohesins and a dockerin with a fused X-module that binds to the cohesin on ScaE, which in turn is covalently attached to the cell wall. The ScaA dockerin binds to ScaB cohesins allowing more carbohydrate-active modules to be assembled. ScaC acts as an adaptor that binds to both ScaA and selected ScaB cohesins, thereby increasing the repertoire of dockerin-bearing proteins that integrate into the complex. In previous studies, a screen for novel cohesin-dockerin complexes was performed which led to the identification of a total of 58 probable cohesin-dockerin pairs. Four were selected for subsequent structural and biochemical characterization based on the quality of their expression and the diversity in their specificities. One of these is C12D22, which comprises the cohesin from the adaptor ScaC protein bound to the dockerin of a CBM-containing protein. This complex has been purified and crystallized, and data were collected to resolutions of 2.5 Å (hexagonal, P65), 2.16 Å (orthorhombic, P212121) and 2.4 Å (orthorhombic, P21212) from three different crystalline forms.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1061-1064.
  • [Show abstract] [Hide abstract]
    ABSTRACT: PhoExo I is a single-strand-specific 3'-5' exonuclease from Pyrococcus horikoshii OT3 and is thought to be involved in a Thermococcales-specific DNA-repair pathway. The recombinant PhoExo I protein was produced as inclusion bodies in Escherichia coli cells. Solubilization of the inclusion bodies was performed by the high-pressure refolding method and highly purified protein was subjected to crystallization by the sitting-drop vapour-diffusion method at 20°C. A crystal of PhoExo I was obtained in a reservoir solution consisting of 0.1 M Tris-HCl pH 8.9, 27% PEG 6000 and diffracted X-rays to 1.52 Å resolution. The crystal of PhoExo I belonged to space group H32, with unit-cell parameters a = b = 112.07, c = 202.28 Å. The crystal contained two PhoExo I molecules in the asymmetric unit.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1076-1079.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human coronavirus NL63 mainly infects younger children and causes cough, fever, rhinorrhoea, bronchiolitis and croup. It encodes two polyprotein precursors required for genome replication and transcription. Each polyprotein undergoes extensive proteolytic processing, resulting in functional subunits. This process is mainly mediated by its genome-encoded main protease, which is an attractive target for antiviral drug design. In this study, the main protease of human coronavirus NL63 was crystallized in complex with a Michael acceptor. The complex crystals diffracted to 2.85 Å resolution and belonged to space group P41212, with unit-cell parameters a = b = 87.2, c = 212.1 Å. Two molecules were identified per asymmetric unit.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1068-1071.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The L-arabinan utilization system of Geobacillus stearothermophilus T6 is composed of five transcriptional units that are clustered within a 38 kb DNA segment. One of the transcriptional units contains 11 genes, the last gene of which (araN) encodes a protein, Ara127N, that belongs to the newly established GH127 family. Ara127N shares 44% sequence identity with the recently characterized HypBA1 protein from Bifidobacterium longum and thus is likely to function similarly as a β-L-arabinofuranosidase. β-L-Arabinofuranosidases are enzymes that hydrolyze β-L-arabinofuranoside linkages, the less common form of such linkages, a unique enzymatic activity that has been identified only recently. The interest in the structure and mode of action of Ara127N therefore stems from its special catalytic activity as well as its membership of the new GH127 family, the structure and mechanism of which are only starting to be resolved. Ara127N has recently been cloned, overexpressed, purified and crystallized. Two suitable crystal forms have been obtained: one (CTP form) belongs to the monoclinic space group P21, with unit-cell parameters a = 104.0, b = 131.2, c = 107.6 Å, β = 112.0°, and the other (RB form) belongs to the orthorhombic space group P212121, with unit-cell parameters a = 65.5, b = 118.1, c = 175.0 Å. A complete X-ray diffraction data set has been collected to 2.3 Å resolution from flash-cooled crystals of the wild-type enzyme (RB form) at -173°C using synchrotron radiation. A selenomethionine derivative of Ara127N has also been prepared and crystallized for multi-wavelength anomalous diffraction (MAD) experiments. Crystals of selenomethionine Ara127N appeared to be isomorphous to those of the wild type (CTP form) and enabled the measurement of a three-wavelength MAD diffraction data set at the selenium absorption edge. These data are currently being used for detailed three-dimensional structure determination of the Ara127N protein.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1038-1045.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adult haemoglobin (Hb) is made up of two α and two β subunits. Mutations that reduce expression of the α- or β-globin genes lead to the conditions α- or β-thalassaemia, respectively. Whilst both conditions are characterized by anaemia of variable severity, other details of their pathophysiology are different, in part owing to the greater stability of the β chains that is conferred through β self-association. In contrast, α subunits interact weakly, and in the absence of stabilizing quaternary interactions the α chain (α) is prone to haem loss and denaturation. The molecular contacts that confer weak self-association of α have not been determined previously. Here, the first structure of an α2 homodimer is reported in complex with one domain of the Hb receptor from Staphylococcus aureus. The α2 dimer interface has a highly unusual, approximately linear, arrangement of four His side chains within hydrogen-bonding distance of each other. Some interactions present in the α1β1 dimer interface of native Hb are preserved in the α2 dimer. However, a marked asymmetry is observed in the α2 interface, suggesting that steric factors limit the number of stabilizing interactions that can form simultaneously across the interface.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1032-1037.
  • [Show abstract] [Hide abstract]
    ABSTRACT: N(6)-Threonylcarbamoyladenosine (t(6)A) is a modified tRNA base required for accuracy in translation. Qri7 is localized in yeast mitochondria and is involved in t(6)A biosynthesis. In t(6)A biosynthesis, threonylcarbamoyl-adenylate (TCA) is synthesized from threonine, bicarbonate and ATP, and the threonyl-carbamoyl group is transferred to adenine 37 of tRNA by Qri7. Qri7 alone is sufficient to catalyze the second step of the reaction, whereas the Qri7 homologues YgjD (in bacteria) and Kae1 (in archaea and eukaryotes) function as parts of multi-protein complexes. In this study, the crystal structure of Qri7 complexed with AMP (a part of TCA) has been determined at 2.94 Å resolution in a new crystal form. The manner of AMP recognition is similar, with some minor variations, among the Qri7/Kae1/YgjD family proteins. The previously reported dimer formation was also observed in this new crystal form. Furthermore, a comparison with the structure of TobZ, which catalyzes a similar reaction to t(6)A biosynthesis, revealed the presence of a flexible loop that may be involved in tRNA binding.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1009-1014.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dragon grouper nervous necrosis virus (DGNNV), a member of the genus Betanodavirus, causes high mortality of larvae and juveniles of the grouper fish Epinephelus lanceolatus. Currently, there is no reported crystal structure of a fish nodavirus. The DGNNV virion capsid is derived from a single open reading frame that encodes a 338-amino-acid protein of approximately 37 kDa. The capsid protein of DGNNV was expressed to form virus-like particles (VLPs) in Escherichia coli. The VLP shape is T = 3 quasi-symmetric with a diameter of ∼38 nm in cryo-electron microscopy images and is highly similar to the native virion. In this report, crystals of DGNNV VLPs were grown to a size of 0.27 mm within two weeks by the hanging-drop vapour-diffusion method at 283 K and diffracted X-rays to ∼7.5 Å resolution. In-house X-ray diffraction data of the DGNNV VLP crystals showed that the crystals belonged to space group R32, with unit-cell parameters a = b = 353.00, c = 800.40 Å, α = β = 90, γ = 120°. 23 268 unique reflections were acquired with an overall Rmerge of 18.2% and a completeness of 93.2%. Self-rotation function maps confirmed the fivefold, threefold and twofold symmetries of the icosahedron of DGNNV VLPs.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1080-1086.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ribokinase (RK) is one of the principal enzymes in carbohydrate metabolism, catalyzing the reaction of D-ribose and adenosine triphosphate to produce ribose-5-phosphate and adenosine diphosphate (ADP). To provide further insight into the catalytic mechanism, the rbsK gene from Vibrio cholerae O395 encoding ribokinase was cloned and the protein was overexpressed in Escherichia coli BL21 (DE3) and purified using Ni(2+)-NTA affinity chromatography. Crystals of V. cholerae RK (Vc-RK) and of its complex with ribose and ADP were grown in the presence of polyethylene glycol 6000 and diffracted to 3.4 and 1.75 Å resolution, respectively. Analysis of the diffraction data showed that both crystals possess symmetry consistent with space group P1. In the Vc-RK crystals, 16 molecules in the asymmetric unit were arranged in a spiral fashion, leaving a large empty space inside the crystal, which is consistent with its high Matthews coefficient (3.9 Å(3) Da(-1)) and solvent content (68%). In the Vc-RK co-crystals four molecules were located in the asymmetric unit with a Matthews coefficient of 2.4 Å(3) Da(-1), corresponding to a solvent content of 50%.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1098-1102.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tree nuts are responsible for many cases of severe food allergies. The 7S seed storage protein vicilin has been identified as a food allergen in many kinds of tree nuts. The vicilin protein consists of an N-terminal low-complexity region with antimicrobial activity and a C-terminal domain that forms a trimeric structure that belongs to the cupin superfamily. In this study, vicilin from pecan (Carya illinoinensis) was isolated and was expressed in bacteria for the first time. The cupin structural core of the protein, residues 369-792, was purified by metal-affinity and gel-filtration chromatography to high purity. Vicilin crystals were obtained and the best crystal diffracted to 2.65 Å resolution in space group P212121.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1049-1052.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human Uba5, which contains an adenylation domain and a C-terminal region, is the smallest ubiquitin-like molecule-activating enzyme. The mechanism through which the enzyme recognizes Ufc1 and catalyzes the formation of the Ufc1-Ufm1 complex remains unknown. In this study, Uba5 residues 364-404 were demonstrated to be necessary for the transthiolation of Ufm1 to Ufc1, and Uba5 381-404 was identified to be the minimal region for Ufc1 recognition. The fusion protein between Uba5 381-404 and Ufc1 was cloned, expressed and purified, and exists as a homodimer in solution. Crystallization was performed at 293 K using PEG 4000 as precipitant; the optimized crystals diffracted to 3.0 Å resolution and had unit-cell parameters a = b = 82.49, c = 62.47 Å, α = β = 90, γ = 120°. With one fusion-protein molecule in the asymmetric unit, the Matthews coefficient and solvent content were calculated to be 2.55 Å(3) Da(-1) and 51.84%, respectively.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1093-1097.
  • [Show abstract] [Hide abstract]
    ABSTRACT: RIG-I is a pathogen-recognition receptor that recognizes viral 5'-triphosphates carrying double-stranded RNA. Upon binding to these microbe-associated molecular patterns (MAMPs), RIG-I forms oligomers and promotes downstream processes that result in type I interferon production and induction of an antiviral state. Here, the crystal structure of the human RIG-I superfamily 2 ATPase domain crystallized in an unusually elongated and open conformation is reported. The elongated structure is probably induced in part by crystal packing, but nevertheless indicates that the domain is intrinsically very flexible. This flexibility might allow substantial structural changes upon substrate binding and oligomerization.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1027-1031.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amphioxus is regarded as an essential animal model for the study of immune evolution. Discovery of new molecules with the immunoglobulin superfamily (IgSF) variable (V) domain in amphioxus would help in studying the evolution of IgSF V molecules in the immune system. A protein was found which just contains only one IgSF V domain in amphioxus, termed Amphi-IgSF-V; it has over 30% sequence identity to the V domains of human immunoglobulins and mammalian T-cell receptors. In order to clarify the three-dimensional structure of this new molecule in amphioxus, Amphi-IgSF-V was expressed, purified and crystallized, and diffraction data were collected to a resolution of 1.95 Å. The crystal belonged to space group P3221, with unit-cell parameters a = b = 53.9, c = 135.5 Å. The Matthews coefficient and solvent content were calculated to be 2.58 Å(3) Da(-1) and 52.38%, respectively. The results will provide structural information to study the evolution of IgSF V molecules in the immune system.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1072-1075.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100 mM Tris-HCl pH 9, 200 mM magnesium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58 Å(3) Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 08/2014; 70(Pt 8):1046-1048.

Related Journals