International Journal of Microbiology Impact Factor & Information

Publisher: Hindawi Publishing Corporation

Journal description

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
ISSN 1687-9198
OCLC 300073188
Material type Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Hindawi Publishing Corporation

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Creative Commons Attribution License
    • Eligible UK authors may deposit in OpenDepot
    • All titles are open access journals
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Quorum sensing (QS) is a key regulator of virulence factors and biofilm formation in Gram-negative bacteria such as Pseudomonas aeruginosa. Microorganisms that inhabit soil are of strategic importance in the discovery of compounds with anti-QS properties. The objective of the study was to test the culture extract of a taxonomically novel species of Paenibacillus strain 139SI for its inhibitory effects on the QS-controlled virulence factors and biofilm formation of Pseudomonas aeruginosa both in vitro and in vivo. The Paenibacillus sp. culture extract was used to test its anti-QS effects on the LasA protease, LasB elastase, pyoverdin production, and biofilm formation of P. aeruginosa as well as evaluate its therapeutic effects on lung bacteriology, pathology, hematological profile, and serum antibody responses of experimental animals in a rat model of chronic lung infection. Results showed significant decrease in the activities of QS-controlled LasA protease, LasB elastase pyoverdin, and biofilm formation of P. aeruginosa caused by the culture extract. Moreover, the extract significantly prolonged the survival times of rats and facilitated the clearance of biofilm infections from infected lungs. In conclusion, the antiquorum sensing effects of culture extract from a novel species of Paenibacillus provide new insights to combat biofilm-associated infections.
    International Journal of Microbiology 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies showed serial 20 d in vitro passage of MRSA strain MW2 in sublethal daptomycin (DAP) resulted in diverse perturbations in both cell membrane (CM) and cell wall (CW) characteristics, including increased CM rigidity; increased CW thickness; "gain-in-function" single nucleotide polymorphisms (SNPs) in the mprF locus (i.e., increased synthesis and translocation of lysyl-phosphatidylglycerol (L-PG)); progressive accumulation of SNPs in yyc and rpo locus genes; reduced carotenoid production; cross-resistance to innate host defense peptides. The current study was designed to characterize the reproducibility of these phenotypic and genotypic modifications following in vitro serial passages of the same parental strain. After a second 20d serial in vitro passage of parental MW2, emergence of DAP-R was associated with evolution of several phenotypes closely mirroring previous passage outcomes. However, in contrast to the initial serial passage strain set, we observed (i) only modest increase in L-PG synthesis and no increase in L-PG outer CM translocation; (ii) significantly increased carotenoid synthesis (P < 0.05); (iii) a different order of SNP accumulations (mprF ≫ rpoB ≫ yycG); (iv) a different cadre and locations of such SNPs. Thus, MRSA strains are not "pre-programmed" to phenotypically and/or genotypically adapt in an identical manner during induction of DAP resistance.
    International Journal of Microbiology 08/2012; 2012:683450. DOI:10.1155/2012/683450