Bioinorganic Chemistry and Applications

Publisher: Hindawi Publishing Corporation

Description

The purpose of the journal Bioinorganic Chemistry and Applications is to publish original research in the form of articles, notes, letters and reviews in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.

  • Impact factor
    1.17
  • 5-year impact
    1.29
  • Cited half-life
    5.30
  • Immediacy index
    0.34
  • Eigenfactor
    0.00
  • Article influence
    0.27
  • Website
    Bioinorganic Chemistry and Applications website
  • Other titles
    Bioinorganic chemistry and applications (Online)
  • ISSN
    1687-479X
  • OCLC
    62523224
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Hindawi Publishing Corporation

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Creative Commons License - see publisher's website
    • Eligible UK authors may deposit in OpenDepot
  • Classification
    ​ green

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The review is mainly concerned with the protonation equilibria of biologically active ligands like amino acids, peptides, DNA constituents, and amino acid esters in nonaqueous media. Equilibrium concentrations of proton-ligand formation as a function of pH were investigated. Also, thermodynamics associated with protonation equilibria were also discussed.
    Bioinorganic Chemistry and Applications 07/2014; 2014.
  • Bioinorganic Chemistry and Applications 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: New series of organotin(IV) complexes and Schiff bases derived from amino acids have been designed and synthesized from condensation of 1H-indole-2,3-dione, 5-chloro-1H-indole-2,3-dione, and 𝛼-amino acids (phenylalanine, isoleucine, and glycine). All compounds are characterized by elemental analyses, molar conductance measurements, and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance (1H, 13C, and 119Sn NMR) spectral studies. The results suggest that Schiff bases behave as monobasic bidentate ligands and coordinate with dibutyltin(IV) in octahedral geometry according to the general formula [Bu2Sn(L)2]. Elemental analyses and NMR spectral data of the ligands with their dibutyltin(IV) complexes agree with their proposed distorted octahedral structures. Few representative compounds are tested for their in vitro antibacterial activity against Gram-positive (B. cereus, Staphylococcus spp.) and Gramnegative (E. coli, Klebsiella spp.) bacteria. The results show that the dibutyltin complexes are more reactive with respect to their corresponding Schiff base ligands.
    Bioinorganic Chemistry and Applications 01/2014; 2014.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Di-phenyl-di-(2,4-difluobenzohydroxamato)tin(IV)(DPDFT), a new metal-based arylhydroxamate antitumor complex, showed high in vivo and in vitro antitumor activity with relative low toxicity, but no data was reported regarding its pharmacokinetics and dependent toxicity. In this paper, a rapid, sensitive, and reproducible HPLC method in vivo using Diamonsil ODS column with a mixture of methanol and phosphoric acid in water (30 : 70, V/V, pH 3.0) as mobile phase was developed and validated for the determination of DPDFT. The plasma was deproteinized with methanol that contained acetanilide as the internal standard (I.S.). The photodiode array detector was set at a wavelength of 228 nm at room temperature and a linear curve over the concentration range 0.1~25 μg·mL(-1) (r = 0.9993) was obtained. The method was used to determine the concentration-time profiles for DPDFT in the plasma after single intravenous administration with doses of 5, 10, 15 mg·kg(-1) to rats. The pharmacokinetics parameter calculations and modeling were carried out using the 3p97 software. The results showed that the concentration-time curves of DPDFT in rat plasma could be fitted to two-compartment model.
    Bioinorganic Chemistry and Applications 01/2012; 2012:210682.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alginate-gelatin mixed gel was applied to immobilized laccase for decolorization of some synthetic dyes including crystal violet. The immobilization procedure was accomplished by adding alginate to a gelatin solution containing the enzyme and the subsequent dropwise addition of the mixture into a stirred CaCl(2) solution. The obtained data showed that both immobilized and free enzymes acted optimally at 50°C for removal of crystal violet, but the entrapped enzyme showed higher thermal stability compared to the free enzyme. The immobilized enzyme represented optimum decolorization at pH 8. Reusability of the entrapped laccase was also studied and the results showed that ca. 85% activity was retained after five successive cycles. The best removal condition was applied for decolorization of seven other synthetic dyes. Results showed that the maximum and minimum dye removal was related to amido black 10B and eosin, respectively.
    Bioinorganic Chemistry and Applications 01/2012; 2012:823830.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A V-shaped ligand Bis(2-benzimidazolymethyl)amine (bba) and its nickel(II) picrate (pic) complex, with composition [Ni(bba)(2)](pic)(2)·3MeOH, have been synthesized and characterized on the basis of elemental analyses, molar conductivities, IR spectra, and UV/vis measurements. In the complex, the Ni(II) ion is six-coordinated with a N(2)O(4) ligand set, resulting in a distorted octahedron coordination geometry. In addition, the DNA-binding properties of the Ni(II) complex have been investigated by electronic absorption, fluorescence, and viscosity measurements. The experimental results suggest that the nickel(II) complex binds to DNA by partial intercalation binding mode.
    Bioinorganic Chemistry and Applications 01/2012; 2012:609796.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-substituted pyridine hydrazide (pyridine-2-carbonyl chloride and 4-chloro-benzoic acid hydrazide) undergoes hydrazide formation of the iminic carbon nitrogen double bond through its reaction with cobalt(II), nickel(II), and copper(II) metal salts in ethanol which are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TG). From the elemental analyses data, 1 : 2 metal complexes are formed having the general formulae [MCl(2)(HL)(2)] ·yH(2)O (where M = Co(II), Ni(II), and Cu(II), y = 1-3). The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied. IR spectra show that ligand is coordinated to the metal ions in a neutral bidentate manner with ON donor sites. The solid complexes have been synthesized and studied by thermogravimetric analysis. All the metal chelates are found to be nonelectrolytes. From the magnetic and solid reflectance spectra, the complexes (cobalt(II), nickel(II), and copper(II)) have octahedral and square planner geometry, respectively. The antibacterial and antifungal activity's data show that the metal complexes have a promising biological activity comparable with the parent ligand against bacterial and fungal species.
    Bioinorganic Chemistry and Applications 01/2012; 2012:104549.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel iron(III) complex [Fe(SF)](ClO(4))(3).2H(2)O; in which SF = N,N(0)-bis{5-[(triphenylphosphonium chloride)-methyl] salicylidene}-o-phenylenediamine) has been synthesized and characterized using different physicochemical methods. The binding of this complex with calf thymus (CT) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, voltammetric studies, and viscosity measurements. The results showed that this complex can bind to DNA via external and groove binding modes.
    Bioinorganic Chemistry and Applications 01/2012; 2012:126451.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.
    Bioinorganic Chemistry and Applications 01/2012; 2012:173819.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal anticancer agents in combination to its low toxicity. Here, we found a vanadium compound Van-7 as an inhibitor of Topo I other than Topo II using topoisomerase-mediated supercoiled DNA relaxation assay. Agarose gel electrophoresis and comet assay showed that Van-7 treatment did not produce cleavable complexes like HCPT, thereby suggesting that Topo I inhibition occurred upstream of the relegation step. Further studies revealed that Van-7 inhibited Topo I DNA binding involved in its intercalating DNA. Van-7 did not affect the catalytic activity of DNase I even up to100 μM. Van-7 significantly suppressed the growth of cancer cell lines with IC(50) at nanomolar concentrations and arrested cell cycle of A549 cells at G2/M phase. All these results indicate that Van-7 is a potential selective Topo I inhibitor with anticancer activities as a kind of Topo I suppressor, not Topo I poison.
    Bioinorganic Chemistry and Applications 01/2012; 2012:756374.

Related Journals