Acta Pharmacologica Sinica (ACTA PHARMACOL SIN )

Publisher: Zhongguo yao li xue hui; Shanghai yao wu yan jiu suo; Zhongguo ke xue yuan, Nature Publishing Group

Description

Acta Pharmacologica Sinica, published monthly, is the official journal of the Chinese Pharmacological Society and Shanghai Institute of Materia Medica, Chinese Academy of Sciences. APS was registered as an English international journal in 2000. APS has gained a well-earned reputation during the last two decades for its persisting in reporting researches of high scientific quality.The APS welcomes current original researches on all aspects of life sciences, both experimental and clinical, from any part of the world. Reviews based primarily on authors' own research of internationally important topics are especially welcome.

  • Impact factor
    2.35
    Show impact factor history
     
    Impact factor
  • 5-year impact
    2.52
  • Cited half-life
    6.20
  • Immediacy index
    0.60
  • Eigenfactor
    0.01
  • Article influence
    0.60
  • Website
    Acta Pharmacologica Sinica website
  • Other titles
    Acta pharmacologica Sinica (Online), APS, Acta pharmacologica Sinica, Zhongguo yao li xue bao
  • ISSN
    1671-4083
  • OCLC
    51169124
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Nature Publishing Group

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 6 months embargo
  • Conditions
    • Published source must be acknowledged and DOI cited
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • On funding body's archive, author website and institutional repository
    • If funding agency rules apply, authors may post authors version to their relevant funding body's archive, 6 months after publication
    • Several Journals have paid open access options and licenses (see journal homepages)
    • Creative Commons Licenses available for selected titles.
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:The roles of G-protein coupled receptors (GPCRs) in stem cell biology remain unclear. In this study, we aimed to identify GPCRs that might contribute to the self-renewal of mouse embryonic stem cells (mESCs).Methods:The expression levels of pluripotent genes and GPCR gene were detected in E14 mESCs using PCR array and RT-PCR. Immunofluorescent staining was used to examine the expression of pluripotent markers and the receptor translocation. Western blot analysis was used to detect phosphorylation of signal proteins. Knock-down of receptor was conducted to confirm its role in pluripotency maintenance.Results:In leukemia inhibitory factor (LIF)-free medium, mESCs lost the typical morphology of pluripotency, accompanied by markedly decreases in expression of somatostatin receptor type 2 (SSTR2), as well as the pluripotency biomarkers Oct4, Sox2, Rex1 and Nanog. Addition of the SSTR2 agonist octreotide or seglitide (0.1-30 μmol/L) in LIF-free medium dose-dependently promoted the self-renewal of mESCs, whereas the SSTR2 antagonist S4 (0.03-3 μmol/L) dose-dependently blocked octreotide-induced self-renewal. Knock-down of SSTR2 significantly decreased the self-renewal of mESCs even in the presence of LIF. Addition of LIF (1000 U/mL) or octreotide (1 μmol/L) in LIF-free medium significantly increased both phosphorylation and nuclear translocation of STAT3.Conclusion:The activation of SSTR2 contributes to the self-renewal of mESCs via activation of the STAT3 pathway.
    Acta Pharmacologica Sinica 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice.Methods:Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles.Results:Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles.Conclusion:Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.
    Acta Pharmacologica Sinica 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:Aliskiren (ALK) is a renin inhibitor that has been used in the treatment of hypertension. The aim of this study was to determine whether ALK could ameliorate pressure overload-induced heart hypertrophy and fibrosis, and to elucidate the mechanisms of action.Methods:Transverse aortic constriction (TAC) was performed in mice to induce heart pressure overload. ALK (150 mg·kg(-1)·d(-1), po), the autophagy inhibitor 3-methyladenine (10 mg·kg(-1) per week, ip) or the PKCβI inhibitor LY333531 (1 mg·kg(-1)·d-(1), po) was administered to the mice for 4 weeks. Heart hypertrophy, fibrosis and function were evaluated based on echocardiography, histological and biochemical measurements. Mechanically stretched cardiomyocytes of rats were used for in vitro experiments. The levels of signaling proteins were measured using Western blotting, while the expression of the relevant genes was analyzed using real-time QRT-PCR.Results:TAC induced marked heart hypertrophy and fibrosis, accompanied by high levels of Ang II in plasma and heart, and by PKCβI/α and ERK1/2 phosphorylation in heart. Meanwhile, TAC induced autophagic responses in heart, i.e. increases in autophagic structures, expression of Atg5 and Atg16 L1 mRNAs and LC3-II and Beclin-1 proteins. These pathological alterations in TAC-mice were significantly ameliorated or blocked by ALK administration. In TAC-mice, 3-methyladenine administration also ameliorated heart hypertrophy, fibrosis and dysfunction, while LY333531 administration inhibited ERK phosphorylation and autophagy in heart. In mechanically stretched cardiomyocytes, CGP53353 (a PKCβI inhibitor) prevented ERK phosphorylation and autophagic responses, while U0126 (an ERK inhibitor) blocked autophagic responses.Conclusion:ALK ameliorates heart hypertrophy, fibrosis and dysfunction in the mouse model in setting of chronic pressure overload, via suppressing Ang II-PKCβI-ERK1/2-regulated autophagy.
    Acta Pharmacologica Sinica 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:Disrupted sleep may be a prodromal symptom or a predictor of depressive disorders. In this study we investigated the relationship between depression symptoms and disrupted sleep using a novel model of stress-mimicked sleep disorders in rats.Methods:SD rats were injected with corticosterone (10, 20 or 40 mg/kg, sc) or vehicle for 7 d. Their sleep-wake behavior was monitored through implanted EEG and EMG electrodes. Their depressive behaviors were assessed using forced swim test, open field test and sucrose preference test.Results:The corticosterone-treated rats showed significantly reduced sleep time, disinhibition of rapid-eye-movement (REM) sleep and altered power spectra during non-REM sleep. All depressive behavioral tests did not show significant difference across the groups. However, individual correlation analysis revealed statistically significance: the immobility time (despair) was negatively correlated with REM sleep latency, slow wave sleep (SWS) time ratio, SWS bouts and delta power density, and it was positively correlated with REM sleep bouts and beta power density. Meanwhile, sucrose preference (anhedonia) was positively correlated with total sleep time and light sleep bouts, and it was negatively correlated with the REM sleep time ratio.Conclusion:In stress-mimicked rats, sleep disturbances are a predictor of depressive disorders, and certain symptoms of depression may be related to the disruption of several specific sleep parameters.
    Acta Pharmacologica Sinica 07/2014; 35(7):879-88.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:Lithospermate B (LSB) isolated from the traditional Chinese medicine danshen (Salvia miltiorrhiza) is an effective Na(+)/K(+)-ATPase inhibitor and used to treat congestive heart failure. The inhibition of LSB on Na(+)/K(+)-ATPase is potentiated by forming complexes with transition metal ions. Here we investigated the safety and metabolites of different transition metal-LSB complexes in rats.Methods:LSB complexed with six different transition metal ions (Mg(2+), Zn(2+), Cr(3+), Co(2+), Ni(2+) and Mn(2+)) were prepared. Adult male SD rats were injected with the different metal-LSB complexes (50 mg/kg, iv), and their bile and blood samples were collected. The metabolites of the metal-LSB complexes in the samples were analyzed using mass spectroscopy.Results:In rats injected with LSB complexed with Mg(2+), Zn(2+), Cr(3+), Ni(2+) or Mn(2+), LSB and its four putative metabolites were equivalently detected in their bile samples. Mn(2+)-LSB exhibited distinct metabolite profiles compared with the other four metal-LSB complexes. The four putative metabolites were identified as 3-monomethyl-LSB, 3,3''-dimethyl-LSB, 3,3'''-dimethyl-LSB and 3,3'',3'''-trimethyl-LSB. The tracking of successive bile samples of rats injected with Mg(2+)-LSB, Zn(2+)-LSB and Mn(2+)-LSB concurrently demonstrated that LSB was firstly methylated at position 3, then at position 3'', and, finally, the 3''' hydroxyl group. All rats injected with Co(2+)-LSB died.Conclusion:Zn(2+)-LSB, Cr(3+)-LSB, Ni(2+)-LSB or Mn(2+)-LSB produces identical four methylated metabolites of LSB in rats, and seemed to be as safe as LSB or Mg(2+)-LSB.
    Acta Pharmacologica Sinica 07/2014; 35(7):937-44.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:Lund human mesencephalic (LUHMES) cells can be differentiated to post-mitotic cells with biochemical, morphological and functional features of dopaminergic (DAergic) neurons. Given the limited scale of primary DAergic neuron culture, we developed differentiated LUHMES cell-based cytotoxicity assays for identifying neuroprotective agents for Parkinson's disease (PD).Methods:LUHMES cells were incubated in a differentiation medium containing cAMP and GDNF for 6 d, and then differentiated cells were treated with MPP(+) or infected with baculovirus containing α-synuclein. Cytotoxicity was determined by measuring intracellular ATP levels and caspase 3/7 activity in the cells. DAergic neuron-specific marker protein and mRNA levels in the cells were analyzed using Western blotting and RT-PCR, respectively.Results:LUHMES cells grew extensive neurites and became post-mitotic neuron-like cells during differentiation period, and three DAergic neuron markers TH, DAT and Nurr1 exhibited different expression profiles. MPP(+) dose-dependently reduced ATP levels in the cells with an IC50 value of 65 μmol/L. MPP(+) (80 μmol/L) significantly increased caspase 3/7 activity in the cells. Both the CDK inhibitor GW8510 and the GSK3β inhibitor SB216763 effectively rescued MPP(+)-induced reduction of ATP levels with EC50 values of 12 and 205 nmol/L, respectively. Overexpression of α-synuclein also significantly decreased intracellular ATP levels and increased caspase 3/7 activity in the cells. GW8510 and SB216763 effectively rescued α-synuclein overexpression-induced reduction of ATP levels, whereas GW8510, but not SB216763, ameliorated α-synuclein overexpression-induced increase of caspase 3/7 activity.Conclusion:MPP(+)- and α-synuclein overexpression-induced cytotoxicity of differentiated LUHMES cells may serve as good alternative systems for identifying neuroprotective compounds for PD.
    Acta Pharmacologica Sinica 07/2014; 35(7):945-56.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:Histone lysine demethylases (KDMs) control the lineage commitments of stem cells. However, the KDMs involved in the determination of the cardiomyogenic lineage are not fully defined. The aim of this study was to investigate the expression profiles of KDMs during the cardiac differentiation of mouse embryonic stem cells (mESCs).Methods:An in vitro cardiac differentiation system of mESCs with Brachyury (a mesodermal specific marker) and Flk-1(+)/Cxcr4(+) (dual cell surface biomarkers) selection was used. The expression profiles of KDMs during differentiation were analyzed using Q-PCR. To understand the contributions of KDMs to cardiomyogenesis, the mESCs on differentiation d 3.5 were sorted by FACS into Brachyury(+) cells and Brachyury(-) cells, and mESCs on d 5.5 were sorted into Flk-1(+)/Cxcr4(+) and Flk-1(-)/Cxcr4(-) cells.Results:mESCs were differentiated into spontaneously beating cardiomyocytes that were visible in embryoid bodies (EBs) on d 7. On d 12-14, all EBs developed spontaneously beating cardiomyocytes. Among the 16 KDMs examined, the expression levels of Phf8, Jarid1a, Jhdm1d, Utx, and Jmjd3 were increased by nearly 2-6-fold on d 14 compared with those on d 0. Brachyury(+) cells showed higher expression levels of Jmjd3, Jmjd2a and Jhdm1d than Brachyury(-) cells. A higher level of Jmjd3 was detected in Flk-1(+)/Cxcr4(+) cells, whereas the level of Jmjd2c was lower in both Brachyury(+) cells and Flk-1(+)/Cxcr4(+) cells.Conclusion:KDMs may play important roles during cardiomyogenesis of mESCs. Our results provide a clue for further exploring the roles of KDMs in the cardiac lineage commitment of mESCs and the potential interference of cardiomyogenesis.
    Acta Pharmacologica Sinica 07/2014; 35(7):899-906.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:To investigate the anti-tumor effects of α-mangostin, a major xanthone identified in the pericarp of mangosteen (Garcinia mangostana Linn), against human gastric adenocarcinoma cells in vitro, and the mechanisms of the effects.Methods:Human gastric adenocarcinoma cell lines BGC-823 and SGC-7901 were treated with α-mangostin. The cell viability was measured with MTT assay, and cell apoptosis was examined using flow cytometry and TUNEL assay. The expression of the relevant proteins was detected using Western blot.Results:Treatment with α-mangostin (3-10 μg/mL) inhibited the viability of both BGC-823 and SGC-7901 cells in dose- and time-manners. Furthermore, α-mangostin (7 μg/mL) time-dependently increased the apoptosis index of the cancer cells, reduced the mitochondrial membrane potential of the cancer cells, and significantly increased the release of cytochrome c and AIF into cytoplasm. Moreover, the α-mangostin treatment markedly suppressed the constitutive Stat3 protein activation, and Stat3-regulated Bcl-xL and Mcl-1 protein levels in the cancer cells.Conclusion:The anti-tumor effects of α-mangostin against human gastric adenocarcinoma cells in vitro can be partly attributed to blockade of Stat3 signaling pathway.
    Acta Pharmacologica Sinica 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:A large number of drug-induced long QT syndromes are ascribed to blockage of hERG potassium channels. The aim of this study was to construct novel computational models to predict compounds blocking hERG channels.Methods:Doddareddy's hERG blockage data containing 2644 compounds were used, which divided into training (2389) and test (255) sets. Laplacian-corrected Bayesian classification models were constructed using Discovery Studio. The models were internally validated with the training set of compounds, and then applied to the test set for validation. Doddareddy's experimentally validated dataset with 60 compounds was used for external test set validation.Results:A Bayesian classification model considering the effects of four molecular properties (Mw, PPSA, ALogP and pKa_basic) as well as extended-connectivity fingerprints (ECFP_14) exhibited a global accuracy (91%), parameter sensitivity (90%) and specificity (92%) in the test set validation, and a global accuracy (58%), parameter sensitivity (61%) and specificity (57%) in the external test set validation.Conclusion:The novel model is better than those in the literatures for predicting compounds blocking hERG channels, and can be used for large-scale prediction.
    Acta Pharmacologica Sinica 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:To investigate the anti-fibrosis effects of ginsenoside Rg1 on alcohol- and CCl4-induced hepatic fibrosis in rats and to explore the mechanisms of the effects.Methods:Rats were given 6% alcohol in water and injected with CCl4 (2 mL/kg, sc) twice a week for 8 weeks. Rg1 (10, 20 and 40 mg/kg per day, po) was administered in the last 2 weeks. Hepatic fibrosis was determined by measuring serum biochemical parameters, HE staining, Masson's trichromic staining, and hydroxyproline and α-SMA immunohistochemical staining of liver tissues. The activities of antioxidant enzymes, lipid peroxidation, and Nrf2 signaling pathway-related proteins (Nrf2, Ho-1 and Nqo1) in liver tissues were analyzed. Cultured hepatic stellate cells (HSCs) of rats were prepared for in vitro studies.Results:In the alcohol- and CCl4-treated rats, Rg1 administration dose-dependently suppressed the marked increases of serum ALT, AST, LDH and ALP levels, inhibited liver inflammation and HSC activation and reduced liver fibrosis scores. Rg1 significantly increased the activities of antioxidant enzymes (SOD, GSH-Px and CAT) and reduced MDA levels in liver tissues. Furthermore, Rg1 significantly increased the expression and nuclear translocation of Nrf2 that regulated the expression of many antioxidant enzymes. Treatment of the cultured HSCs with Rg1 (1 μmol/L) induced Nrf2 translocation, and suppressed CCl4-induced cell proliferation, reversed CCl4- induced changes in MDA, GPX, PCIII and HA contents in the supernatant fluid and α-SMA expression in the cells. Knockdown of Nrf2 gene diminished these actions of Rg1 in CCl4-treated HSCs in vitro.Conclusion:Rg1 exerts protective effects in a rat model of alcohol- and CCl4-induced hepatic fibrosis via promoting the nuclear translocation of Nrf2 and expression of antioxidant enzymes.
    Acta Pharmacologica Sinica 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:Potassium 2-(1-hydroxypentyl)-benzoate (dl-PHPB) is a new drug candidate for ischemic stroke. The aim of this study was to investigate the effects of dl-PHPB on memory deficits and long-term potentiation (LTP) impairment in animal models of Alzheimer's disease.Methods:The expression of NMDA receptor subunits GluN1 and GluN2B in the hippocampus and cortex of APP/PS1 transgenic mice were detected using Western blot analysis. Memory deficits of the mice were evaluated with the passive avoidance test. LTP impairment was studied in the dentate region of Aβ1-42-injected rats and APP/PS1 transgenic mice.Results:APP/PS1 transgenic mice showed significantly lower levels of GluN1 and p-GluN2B in hippocampus, and chronic administration of dl-PHPB (100 mg·kg(-1)·d(-1), po) reversed the downregulation of p-GluN2B, but did not change GluN1 level in the hippocampus. Furthermore, chronic administration of dl-PHPB reversed the memory deficits in APP/PS1 transgenic mice. In the dentate region of normal rats, injection of dl-PHPB (100 μmol/L, icv) did not change the basal synaptic transmission, but significantly enhanced the high-frequency stimulation (HFS)-induced LTP, which was completely prevented by pre-injection of APV (150 μmol/L, icv). Chronic administration of dl-PHPB (100 mg·kg(-1)·d(-1), po) reversed LTP impairment in Aβ1-42-injected normal rats and APP/PS1 transgenic mice.Conclusion:Chronic administration of dl-PHPB improves learning and memory and promotes LTP in the animal models of Alzheimer's disease, possibly via increasing p-GluN2B expression in the hippocampus.
    Acta Pharmacologica Sinica 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim:7,8-Dihydroxy-4-(3-hydroxy-4-methoxyphenyl)-2H-chromen-2-one (DW532) is one of simplified analogues of hematoxylin that has shown broad-spectrum inhibition on tyrosine kinases and in vitro anti-cancer activities. The aim of this study was to identify DW532 as a agent targeting both kinases and tubulin, and to investigate its anti-cancer and anti-angiogenesis activities.Methods:In vitro tyrosine kinases activity was examined with ELISA, and tyrosine kinases activity in cells was evaluated with Western blot analysis. Tubulin turbidity assay, surface plasmon resonance and immunofluorescence technique were used to characterize the tubulin inhibitory activity. Cell proliferation was examined with SRB assay, and cell apoptosis and cell cycle distribution were analyzed with Annexin-V/PI staining and flow cytometry. Tube formation, aortic ring and chick chorioallantoic membrane assays were used to evaluate the anti-angiogenesis efficacy.Results:DW532 inhibited EGFR and VEGFR2 in vitro kinase activity (the IC50 values were 4.9 and 5.5 μmol/L, respectively), and suppressed their downstream signaling. DW532 dose-dependently inhibited tubulin polymerization via direct binding to tubulin, thus disrupting the mitotic spindle assembly and leading to abnormal cell division. In a panel of human cancer cells, DW532 (1 and 10 μmol/L) induced G2/M phase arrest and cell apoptosis, which subsequently resulted in cytotoxicity. Knockdown of BubR1 or Mps1, the two core proteins of the spindle assembly checkpoint dramatically decreased DW532-induced cell cycle arrest in MDA-MB-468 cells. Moreover, treatment with DW532 potently and dose-dependently suppressed angiogenesis in vitro and in vivo.Conclusion:DW532 is a dual inhibitor against tubulin and tyrosine kinases, and deserves further development as a novel anti-cancer agent.
    Acta Pharmacologica Sinica 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To establish a population pharmacokinetics (PPK) model for lamotrigine (LTG) in Chinese children with epilepsy in order to formulate an individualized dosage guideline.
    Acta Pharmacologica Sinica 10/2012; 33(11):1417-1423.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biologics, including monoclonal antibodies (mAbs) and other therapeutic proteins such as cytokines and growth hormones, have unique characteristics compared to small molecules. This paper starts from an overview of the pharmacokinetics (PK) of biologics from a mechanistic perspective, the determination of a starting dose for first-in-human (FIH) studies, and dosing regimen optimisation for phase II/III clinical trials. Subsequently, typical clinical pharmacology issues along the corresponding pathways for biologics development are summarised, including drug-drug interactions, QTc prolongation, immunogenicity, and studies in specific populations. The relationships between the molecular structure of biologics, their pharmacokinetic and pharmacodynamic characteristics, and the corresponding clinical pharmacology strategies are summarised and depicted in a schematic diagram.
    Acta Pharmacologica Sinica 09/2012; 33(11):1339-1347.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim:To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs), and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9–36) are involved in these effects.Methods:HUVECs were used. The activity of eNOS was measured with NOS assay kit. Phosphorylated and total eNOS proteins were detected using Western blot analysis. The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50–5000 pmol/L) for 30 min significantly increased the activity of eNOS. Incubation of HUVECs with GLP-1 (500–5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177. Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein, did not affect the level of eNOS mRNA. GLP-1R agonists exenatide and GLP-1(9–36) at the concentration of 5000 pmol/L increased the activity, phosphorylation and protein level of eNOS. GLP-1R antagonist exendin(9–39) or DPP-4 inhibitor sitagliptin, which abolished GLP-1(9–36) formation, at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9–36)-related pathways. GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.
    Acta Pharmacologica Sinica 01/2012; 33(1):75-81.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypnotic agent propofol is effective for the induction and maintenance of anesthesia. However, recent studies have shown that propofol administration is related to arrhythmias. Propofol displays both pro- and anti-arrhythmic effects in a concentration-dependent manner. Data indicate that propofol can convert supraventricular tachycardia and ventricular tachycardia and may inhibit the conduction system of the heart. The mechanism of the cardiac effects remains poorly defined and may involve ion channels, the autonomic nervous system and cardiac gap junctions. Specifically, sodium, calcium and potassium currents in cardiac cells are suppressed by clinically relevant concentrations of propofol. Propofol shortens the action potential duration (APD) but lessens the ischemia-induced decrease in the APD. Furthermore, propofol suppresses both sympathetic and parasympathetic tone and preserves gap junctions during ischemia. All of these effects cumulatively contribute to the antiarrhythmic and proarrhythmic properties of propofol.Keywords: propofol; arrhythmias; ion channels; gap junction; autonomic nervous system
    Acta Pharmacologica Sinica 05/2011; 32(6):817-823.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression and role of the aquaporin (AQP) family water channels in the peripheral nervous system was less investigated. Since 2004, however, significant progress has been made in the immunolocalization, regulation and function of AQPs in the peripheral nervous system. These studies showed selective localization of three AQPs (AQP1, AQP2, and AQP4) in dorsal root ganglion neurons, enteric neurons and glial cells, periodontal Ruffini endings, trigeminal ganglion neurons and vomeronasal sensory neurons. Functional characterization in transgenic knockout mouse model revealed important role of AQP1 in pain perception. This review will summarize the progress in this field and discuss possible involvement of AQPs in peripheral neuropathies and their potential as novel drug targets.Keywords: aquaporins; peripheral nervous system; neuronal transduction; gene knockout; gene expression; pain
    Acta Pharmacologica Sinica 05/2011; 32(6):711-715.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The κ-opioid receptor (KOR), a member of the opioid receptor family, is widely expressed in the central nervous system and peripheral tissues. Substantial evidence has shown that activation of KOR by agonists and endogenous opioid peptides in vivo may produce a strong analgesic effect that is free from the abuse potential and the adverse side effects of μ-opioid receptor (MOR) agonists, such as morphine. In addition, activation of the KOR has also been shown to exert an inverse effect on morphine-induced adverse actions, such as tolerance, reward, and impairment of learning and memory. Therefore, the KOR has received much attention in the effort to develop alternative analgesics to MOR agonists and agents for the treatment of drug addiction. However, KOR agonists also produce several severe undesirable side effects such as dysphoria, water diuresis, salivation, emesis, and sedation in nonhuman primates, which may limit the clinical utility of KOR agonists for pain and drug abuse treatment. This article will review the role of KOR activation in mediating antinociception and addiction. The possible therapeutic application of κ-agonists in the treatment of pain and drug addiction is also discussed.Keywords: κ-opioid receptor; dynorphin; desensitization; antinociception; tolerance; addiction; drug withdrawal; cocaine reward; negative mood state
    Acta Pharmacologica Sinica 08/2010; 31(9):1065-1070.

Related Journals