Frontiers in Genetics Journal Impact Factor & Information

Publisher: Frontiers

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
ISSN 1664-8021

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On open access repositories
    • Authors retain copyright
    • Creative Commons Attribution License
    • Published source must be acknowledged
    • Publisher's version/PDF may be used
    • Set statement to accompany [This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.]
    • Articles are placed in PubMed Central immediately on behalf of authors.
    • All titles are open access journals
    • Publisher last contacted on 16/07/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many applications of high throughput sequencing rely on the availability of an accurate reference genome. Variant calling often produces large data sets that cannot be realistically validated and which may contain large numbers of false-positives. Errors in the reference assembly increase the number of false-positives. While resources are available to aid in the filtering of variants from human data, for other species these do not yet exist and strict filtering techniques must be employed which are more likely to exclude true-positives. This work assesses the accuracy of the pig reference genome (Sscrofa10.2) using whole genome sequencing reads from the Duroc sow whose genome the assembly was based on. Indicators of structural variation including high regional coverage, unexpected insert sizes, improper pairing and homozygous variants were used to identify low quality (LQ) regions of the assembly. Low coverage (LC) regions were also identified and analyzed separately. The LQ regions covered 13.85% of the genome, the LC regions covered 26.6% of the genome and combined (LQLC) they covered 33.07% of the genome. Over half of dbSNP variants were located in the LQLC regions. Of copy number variable regions identified in a previous study, 86.3% were located in the LQLC regions. The regions were also enriched for gene predictions from RNA-seq data with 42.98% falling in the LQLC regions. Excluding variants in the LQ, LC, or LQLC from future analyses will help reduce the number of false-positive variant calls. Researchers using WGS data should be aware that the current pig reference genome does not give an accurate representation of the copy number of alleles in the original Duroc sow’s genome.
    Frontiers in Genetics 11/2015; 6(e0118867). DOI:10.3389/fgene.2015.00338

  • Frontiers in Genetics 11/2015; 6(231). DOI:10.3389/fgene.2015.00334

  • Frontiers in Genetics 11/2015; 6. DOI:10.3389/fgene.2015.00328
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
    Frontiers in Genetics 11/2015; 6(150018). DOI:10.3389/fgene.2015.00320
  • Source

    Frontiers in Genetics 11/2015; 6:318. DOI:10.3389/fgene.2015.00318
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed.
    Frontiers in Genetics 11/2015; 6(e76766). DOI:10.3389/fgene.2015.00325
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some common diseases are known to have an inherited component, however, their population- and familial-incidence patterns do not conform to any known monogenic Mendelian pattern of inheritance and instead they are currently much better explained if an underlying polygenic architecture is posited. Studies that have attempted to identify the causative genetic factors have been designed on this polygenic framework, but so far the yield has been largely unsatisfactory. Based on accumulating recent observations concerning the roles of somatic mosaicism in disease, in this article a second framework which posits a single gene-two hit model which can be modulated by a mutator/anti-mutator genetic background is suggested. I discuss whether such a model can be considered a viable alternative based on current knowledge, its advantages over the current polygenic framework, and describe practical routes via which the new framework can be investigated.
    Frontiers in Genetics 11/2015; 6(681). DOI:10.3389/fgene.2015.00327
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The use of genetic predictive markers in medical practice does not necessarily bear the same kind of medical and ethical consequences than that of genes directly involved in monogenic diseases. However, the French bioethics law framed in the same way the production and use of any genetic information. It seems therefore necessary to explore the practical and ethical context of the actual use of predictive markers in order to highlight their specific stakes. In this study, we document the uses of HLA-B(*)27, which are an interesting example of the multiple features of genetic predictive marker in general medical practice. Materials and methods: The aims of this monocentric and qualitative study were to identify concrete and ethical issues of using the HLA-B(*)27 marker and the interests and limits of the legal framework as perceived by prescribers. In this regard, a thematic and descriptive analysis of five rheumatologists' semi-structured and face-to-face interviews was performed. Results: According to most of the interviewees, HLA-B(*)27 is an "overframed" test because they considered that this test is not really genetic or at least does not have the same nature as "classical genetic tests"; HLA-B(*)27 is not concerned by the ethical challenges of genetic test; the major ethics stake of this marker is not linked to its genetic nature but rather to the complexity of the probabilistic information. This study allows also showing that HLA-B(*)27, validated for a certain usage, may be used in different ways in practice. Discussion: This marker and its clinical uses underline the challenges of translating both statistical concepts and unifying legal framework in clinical practice. This study allows identifying some new aspects and stakes of genetics in medicine and shows the need of additional studies about the use of predictive genetic markers, in order to provide a better basis for decisions and legal framework regarding these practices.
    Frontiers in Genetics 11/2015; 6:299. DOI:10.3389/fgene.2015.00299