Frontiers in Neural Circuits

Publisher: Frontiers

Journal description

Current impact factor: 2.95

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.95
2012 Impact Factor 3.333
2011 Impact Factor 5.098

Impact factor over time

Impact factor
Year

Additional details

5-year impact 4.48
Cited half-life 2.90
Immediacy index 0.55
Eigenfactor 0.00
Article influence 2.73
Other titles Frontiers in neural circuits (online)
ISSN 1662-5110
OCLC 250619181
Material type Document, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Frontiers

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Conditions
    • On open access repositories
    • Authors retain copyright
    • Creative Commons Attribution License
    • Published source must be acknowledged
    • Publisher's version/PDF must be used for post-print
    • Set statement to accompany [This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.]
    • Articles are placed in PubMed Central immediately on behalf of authors.
    • Publisher last contacted on 04/10/2013
    • All titles are open access journals
  • Classification
    ​ green

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features.
    Frontiers in Neural Circuits 08/2015; 9. DOI:10.3389/fncir.2015.00038
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The degeneration of dopaminergic neurons in the substantia nigra pars compacta leads to parkinsonian motor symptoms via changes in electrophysiological activity throughout the basal ganglia. High-frequency deep brain stimulation (DBS) partially treats these symptoms, but the mechanisms are unclear. We hypothesize that motor symptoms of Parkinson's disease (PD) are associated with increased information transmission from basal ganglia output neurons to motor thalamus input neurons and that therapeutic DBS of the subthalamic nucleus (STN) treats these symptoms by reducing this extraneous information transmission. We tested these hypotheses in a unilateral, 6-hydroxydopamine-lesioned rodent model of hemiparkinsonism. Information transfer between basal ganglia output neurons and motor thalamus input neurons increased in both the orthodromic and antidromic directions with hemiparkinsonian (hPD) onset, and these changes were reversed by behaviorally therapeutic STN-DBS. Omnidirectional information increases in the parkinsonian state underscore the detrimental nature of that pathological information and suggest a loss of information channel independence. Therapeutic STN-DBS reduced that pathological information, suggesting an effective increase in the number of independent information channels. We interpret these data with a model in which pathological information and fewer information channels diminishes the scope of possible motor activities, driving parkinsonian symptoms. In this model, STN-DBS restores information-channel independence by eliminating or masking the parkinsonism-associated information, and thus enlarges the scope of possible motor activities, alleviating parkinsonian symptoms.
    Frontiers in Neural Circuits 07/2015; 9:31. DOI:10.3389/fncir.2015.00031
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invariant sensory coding is the robust coding of some sensory information (e.g., stimulus type) despite major changes in other sensory parameters (e.g., stimulus strength). The contribution of large populations of neurons (ensembles) to invariant sensory coding is not well understood, but could offer distinct advantages over invariance in single cell receptive fields. To test invariant sensory coding in neuronal ensembles evoked by single whisker stimulation as early as primary sensory cortex, we recorded detailed spatiotemporal movies of evoked ensemble activity through the depth of rat barrel cortex using microelectrode arrays. We found that an emergent property of whisker evoked ensemble activity, its spatiotemporal profile, was notably invariant across major changes in stimulus amplitude (up to >200-fold). Such ensemble-based invariance was found for single whisker stimulation as well as for the integrated profile of activity evoked by the more naturalistic stimulation of the entire whisker array. Further, the integrated profile of whisker array evoked ensemble activity and its invariance to stimulus amplitude shares striking similarities to "funneled" tactile perception in humans. We therefore suggest that ensemble-based invariance could provide a robust neurobiological substrate for invariant sensory coding and integration at an early stage of cortical sensory processing already in primary sensory cortex.
    Frontiers in Neural Circuits 07/2015; 9:34. DOI:10.3389/fncir.2015.00034
  • [Show abstract] [Hide abstract]
    ABSTRACT: The acoustic signal is crucial for animals to obtain information from the surrounding environment. Like other sensory modalities, the central auditory system undergoes adaptive changes (i.e., plasticity) during the developmental stage as well as other stages of life. Owing to its plasticity, auditory centers may be susceptible to various factors, such as medical intervention, variation in ambient acoustic signals and lesion of the peripheral hearing organ. There are critical periods during which auditory centers are easier to suffer from abnormal experiences. Particularly in the early postnatal development period, aural inputs are essential for functional maturity of auditory centers. An aural deprivation model, which can be achieved by attenuating or blocking the peripheral acoustic afferent input to the auditory center, is ideal for investigating plastic changes of auditory centers. Generally, auditory plasticity includes structural and functional changes, and some of which can be irreversible. Aural deprivation can distort tonotopic maps, disrupt the binaural integration, reorganize the neural network and change the synaptic transmission in the primary auditory cortex or at lower levels of the auditory system. The regulation of specific gene expression and the modified signal pathway may be the deep molecular mechanism of these plastic changes. By studying this model, researchers may explore the pathogenesis of hearing loss and reveal plastic changes of the auditory cortex, which will facilitate the therapeutic advancement in patients with severe hearing loss. After summarizing developmental features of auditory centers in auditory deprived animals and discussing changes of central auditory remodeling in hearing loss patients, we are aimed at stressing the significant of an early and well-designed auditory training program for the hearing rehabilitation.
    Frontiers in Neural Circuits 06/2015; 9. DOI:10.3389/fncir.2015.00026
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.
    Frontiers in Neural Circuits 05/2015; 9. DOI:10.3389/fncir.2015.00023
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.
    Frontiers in Neural Circuits 05/2015; 9:24. DOI:10.3389/fncir.2015.00024
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous neural activity in the auditory nerve fibers and in auditory cortex in healthy animals is discussed with respect to the question: Is spontaneous activity noise or information carrier? The studies reviewed suggest strongly that spontaneous activity is a carrier of information. Subsequently, I review the numerous findings in the impaired auditory system, particularly with reference to noise trauma and tinnitus. Here the common assumption is that tinnitus reflects increased noise in the auditory system that among others affects temporal processing and interferes with the gap-startle reflex, which is frequently used as a behavioral assay for tinnitus. It is, however, more likely that the increased spontaneous activity in tinnitus, firing rate as well as neural synchrony, carries information that shapes the activity of downstream structures, including non-auditory ones, and leading to the tinnitus percept. The main drivers of that process are bursting and synchronous firing, which facilitates transfer of activity across synapses, and allows formation of auditory objects, such as tinnitus
    Frontiers in Neural Circuits 04/2015; 9. DOI:10.3389/fncir.2015.00019
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Layer 4 (L4) of primary auditory cortex (A1) receives a tonotopically organized projection from the medial geniculate nucleus of the thalamus. However, individual neurons in A1 respond to a wider range of sound frequencies than would be predicted by their thalamic input, which suggests the existence of cross-frequency intracortical networks. We used laser scanning photostimulation and uncaging of glutamate in brain slices of mouse A1 to characterize the spatial organization of intracortical inputs to L4 neurons. Slices were prepared to include the entire tonotopic extent of A1. We find that L4 neurons receive local vertically organized (columnar) excitation from layers 2 through 6 (L6) and horizontally organized excitation primarily from L4 and L6 neurons in regions centered ~300-500 μm caudal and/or rostral to the cell. Excitatory horizontal synaptic connections from layers 2 and 3 were sparse. The origins of horizontal projections from L4 and L6 correspond to regions in the tonotopic map that are approximately an octave away from the target cell location. Such spatially organized lateral connections may contribute to the detection and processing of auditory objects with specific spectral structures.
    Frontiers in Neural Circuits 04/2015; 9. DOI:10.3389/fncir.2015.00017
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With recent advances in computational analyses of structural neuroimaging, it is possible to comprehensively map neural connectivity, i.e., the brain connectome. The architectural organization of the connectome is believed to play an important role in several biological processes. Central to the conformation of the connectome are connectivity hubs, which are likely to be organized in accordance with the rich club phenomenon, as evidenced by graph theory analyses of neural architecture. It is yet unclear whether rich club connectivity hubs are consistently organized in the same anatomical framework across healthy adults. We constructed the brain connectome from 43 healthy adults, based on T1-weighted and diffusion tensor MRI data. Probabilistic fiber tractography was used to evaluate connectivity between each possible pair of cortical anatomical regions of interest. Connectivity hubs were identified in accordance with the rich club phenomenon applied to binarized matrices, and the variability in frequency of hub participation was assessed node-wise across all subjects. The anatomical location of nodes participating in rich club networks was fairly consistent across subjects. The most common locations for rich club nodes were identified in integrative areas, such as the cingulate and pericingulate regions, medial aspect of the occipital areas and precuneus; or else, they were found in important and specialized brain regions (such as the oribitofrontal cortex, caudate, fusiform gyrus, and hippocampus). Marked anatomical consistency exists across healthy brains in terms of nodal participation and location of rich club networks. The consistency of connections between integrative areas and specialized brain regions highlights a fundamental connectivity pattern shared among healthy brains. We propose that approaching brain connectivity with this framework of anatomical consistencies may have clinical implications for early detection of individual variability.
    Frontiers in Neural Circuits 04/2015; 9:16. DOI:10.3389/fncir.2015.00016