Chromosome Research (Chromosome Res )

Publisher: Springer Verlag

Description

Chromosome Research provides for the rapid publication of high quality research papers covering a wide field of investigation into the molecular supramolecular evolutionary and dynamic aspects of chromosome and nuclear biology. Topics include: Metaphase chromosomes; Chromatin; Interphase nuclei; Chromosome movement and the mitotic spindle; Modulation of chromosome and nuclear architecture; Genome organization; Meiosis pairing and recombination; Chromosome disjunction; Molecular cytogenetics; Chromosome polymorphisms; Evolutionary cytogenetics; Flow cytogenetics; Imaging methodology and its applications; Gene expression and RNA processing; Genome and chromosome mapping; In situ hybridization; Cell cycle; Sister chromatid exchange; Mutation and structural rearrangements. Chromosome Research is the only publication for molecular and developmental biologists as well as geneticists whose interests include the chromosomology of all living organisms.

  • Impact factor
    2.85
  • 5-year impact
    3.00
  • Cited half-life
    6.70
  • Immediacy index
    0.51
  • Eigenfactor
    0.01
  • Article influence
    1.26
  • Website
    Chromosome Research website
  • Other titles
    Chromosome research (Online)
  • ISSN
    1573-6849
  • OCLC
    37773914
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the tilapia species group, the major sex determining factors have been located on Linkage Group 1 (LG1), on a small chromosome (Chr) pair in Oreochromis niloticus, on LG3 (the largest Chr pair) in O. aureus or on both, depending on populations/strains. LG3 has all the traits of an old sex chromosome, whereas LG1 seems to be an emerging one. Taking advantage of its large size, LG3-Chr has been microdissected to search for sex-linked genes. It was isolated from metaphase spreads of XX-female and YY-male in O. niloticus and of ZZ-male in O. aureus. Using cDNA capture and direct cDNA selection procedures we isolated various transposons but a reduced number of genes. We therefore compared three different whole genomic amplification (WGA) methods (DOP-PCR, GenomePlex and GenomiPhi) using a pool of 30 microdissected chromosomes, to evaluate the best LG3-Chr representation. Loci from 5 microsatellites, 2 genes and 2 uncoded fragments located on LG3-Chr have been searched by PCR on the DNA obtained by the 3 methods. GenomePlex and GenomiPhi gave 60 % loci amplification. GenomePlex probe produced the best painting probe, entirely covering the two LG3-Chrs with weaker signals in the gene-rich pericentromeric region, in both species, confirming that this pair is essentially composed of conserved and specific repeated sequences. This will allow to trace its history within the tilapia group.
    Chromosome Research 09/2014; 22(3):433.
  • Chromosome Research 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Euchromatic features are largely absent from the human inactive X chromosome (Xi), with the exception of several large tandem repeats that can be detected as euchromatin bands at metaphase. Despite residing megabases apart, these tandem repeats make frequent inactive X-specific interactions. The mouse homologue has been reported for at least one of the tandem repeats, but whether the mouse Xi is also characterized by distinct bands of euchromatin remains unknown. We examined the mouse Xi for the presence of euchromatin bands by examining the pattern of histone H3 dimethylated at lysine 4 and detected two major signals. The first band resides in the subtelomeric region of band XF5 and may correspond to the pseudoautosomal region. The second band localizes to XE3 and coincides with an extensive complex repeat composed of a large tandem and inverted repeat segment as well as several large short interspersed nuclear element (SINE)-rich tandem repeats. Fluorescence in situ hybridization reveals that sequences with homology to the repeat region are scattered along the length of the Y chromosome. Immunofluorescence analysis of histone H3 trimethylated at lysine 9 on metaphase chromosomes indicates that the repeat region corresponds to a band of constitutive heterochromatin on the male X and female active X chromosomes, whereas the euchromatin signal appears to be female specific. These data suggest that the band of euchromatin observed at XE3 is unique to the mouse Xi, comparable to the chromatin arrangement of several large tandem repeats located on the human X chromosome.
    Chromosome Research 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transposable elements are mobile genetic elements that have successfully populated eukaryotic genomes and show diversity in their structure and transposition mechanisms. Although first viewed solely as selfish, transposable elements are now known as important vectors to drive the adaptation and evolution of their host genome. Transposable elements can affect host gene structures, gene copy number, gene expression, and even as a source for novel genes. For example, a number of transposable element sequences have been co-opted to contribute to evolutionary innovation, such as the mammalian placenta and the vertebrate immune system. In plants, the need to adapt rapidly to changing environmental conditions is essential and is reflected, as will be discussed, by genome plasticity and an abundance of diverse, active transposon families. This review focuses on transposable elements in plants, particularly those that have beneficial effects on the host. We also emphasize the importance of having proper tools to annotate and classify transposons to better understand their biology.
    Chromosome Research 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The release of a reference genome for Arabidopsis thaliana in 2000 has been an enormous boon for the study of plant genetics. Less than a decade later, however, a revolution in sequencing technology had enabled rapid and inexpensive re-sequencing of whole A. thaliana genomes. Large-scale efforts to characterize natural genomic variation in A. thaliana have revealed remarkable intra-specific variation in this species, ranging from single-nucleotide differences to large structural rearrangements. The partitioning of this variation by geography and local adaptation has been described using powerful new methods and tools. Simultaneously, an ambitious research agenda has emerged to sequence 1001 A. thaliana lines from around the world, while sequencing of related species is enabling powerful evolutionary genomic analyses. In this review, I summarize recent progress in genomic analysis of natural variation in A. thaliana and its close relatives. This progress has set the stage for the emergence of Arabidopsis as a model genus for evolutionary and functional genomics.
    Chromosome Research 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabidopsis thaliana serves as a very good model organism to investigate the control of transposable elements (TEs) by genetic and genomic approaches. As TE movements are potentially deleterious to the hosts, hosts silence TEs by epigenetic mechanisms, such as DNA methylation. DNA methylation is controlled by DNA methyltransferases and other regulators, including histone modifiers and chromatin remodelers. RNAi machinery directs DNA methylation to euchromatic TEs, which is under developmental control. In addition to the epigenetic controls, some TEs are controlled by environmental factors. TEs often affect expression of nearby genes, providing evolutionary sources for epigenetic, developmental, and environmental gene controls, which could even be beneficial for the host.
    Chromosome Research 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Minichromosomes have been extensively used as tools for revealing the functional structures of eukaryotic chromosomes. However, the definition of a minichromosome is still ambiguous. Based on previous reports on various eukaryotes, minichromosomes are defined here to be chromosomes that are smaller than one third the size of the smallest chromosome in the given species. In Arabidopsis thaliana, therefore, chromosomes <8.5 Mb in length are classified as minichromosomes, although to date only six different minichromosomes have been found or created, probably due to their extremely small sizes that limit detection. Minichromosomes vary from 1.7 to 8.4 Mb in length and are much shorter than authentic chromosomes (25.3 to 38.0 Mb). Linear and circular minichromosomes have been identified, and both types are maintained as experimental lines. Most of the circular, ring-shaped minichromosomes in Arabidopsis are relatively stable at mitosis and transmissible to the next generation, regardless of the centromere form (dicentric or monocentric). Recently, a ring minichromosome was artificially generated by a combination of the Cre/LoxP and Ac/Ds systems. This artificial ring chromosome, AtARC1, has several advantages over the previously reported minichromosomes as a chromosome vector; therefore, this method of generating artificial ring chromosomes is expected to be improved for application to other plant species including important crops.
    Chromosome Research 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In somatic cells, recombination is a means of DNA damage repair. The most severe type of damage in nuclear DNA is double-strand breaks (DSBs) which may be repaired via either non-homologous end joining (NHEJ) or homologous recombination (HR). In this review, we will summarize the basic features, the mechanisms, and the key players of both repair modes in plants with a focus on the model plant Arabidopsis thaliana. NHEJ may result in insertion of sequences from elsewhere in the genome but is much more often associated with deletions. If more than one DSB is processed simultaneously via NHEJ, besides deletions, inversions or translocations may also arise. As the germ line is only set aside late in plant development, somatic changes may be transferred to the next generation. Thus, NHEJ might influence the evolution of plant genomes and indeed seems to be an important factor of genome shrinking. Deletions may also be due to DSB-induced recombination between tandem duplicated homologous sequences by single-strand annealing (SSA). Moreover, conservative HR using the synthesis-dependent strand annealing (SDSA) mechanism operates in somatic plant cells. The efficiency of SDSA is dependent on the genomic template used as matrix for the repair of the DSB. Besides DSBs, stalled replication forks may also be processed via HR. Several DNA processing enzymes are involved in the regulation of replication initiated HR, mostly in its suppression, and we summarize the current knowledge of these processes in plants.
    Chromosome Research 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic "raw material," and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids.
    Chromosome Research 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: More and more reported results of nucleosome positioning and histone modifications showed that DNA structure play a well-established role in splicing. In this study, a set of DNA geometric flexibility parameters originated from molecular dynamics (MD) simulations were introduced to discuss the structure organization around splice sites at the DNA level. The obtained profiles of specific flexibility/stiffness around splice sites indicated that the DNA physical-geometry deformation could be used as an alternative way to describe the splicing junction region. In combination with structural flexibility as discriminatory parameter, we developed a hybrid computational model for predicting potential splicing sites. And the better prediction performance was achieved when the benchmark dataset evaluated. Our results showed that the mechanical deformability character of a splice junction is closely correlated with both the splice site strength and structural information in its flanking sequences.
    Chromosome Research 04/2014;
  • Chromosome Research 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Well-characterized molecular and cytogenetic maps are yet to be established in Japanese quail (Coturnix japonica). The aim of the current study was to cytogenetically map and determine linkage of specific genes and gene complexes in Japanese quail through the use of chicken (Gallus gallus) and turkey (Meleagris gallopavo) genomic DNA probes and conduct a comparative study among the three genomes. Chicken and turkey clones were used as probes on mitotic metaphase and meiotic pachytene stage chromosomes of the three species for the purpose of high-resolution fluorescence in situ hybridization (FISH). The genes and complexes studied included telomerase RNA (TR), telomerase reverse transcriptase (TERT), 5S rDNA, 18S-5.8S-28S rDNA (i.e., nucleolus organizer region (NOR)), and the major histocompatibility complex (MHC). The telomeric profile of Japanese quail was investigated through the use of FISH with a TTAGGG-PNA probe. A range of telomeric array sizes were confirmed as found for the other poultry species. Three NOR loci were identified in Japanese quail, and single loci each for TR, TERT, 5S rDNA and the MHC-B. The MHC-B and one NOR locus were linked on a microchromosome in Japanese quail. We confirmed physical linkage of 5S rDNA and the TR gene on an intermediate-sized chromosome in quail, similar to both chicken and turkey. TERT localized to CJA 2 in quail and the orthologous chromosome region in chicken (GGA 2) and in turkey (MGA 3). The cytogenetic profile of Japanese quail was further developed by this study and synteny was identified among the three poultry species.
    Chromosome Research 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma.
    Chromosome Research 03/2014;