Biodegradation (Biodegradation )

Publisher: Kluwer Online, Springer Verlag

Description

Biodegradation publishes papers on all aspects of science pertaining to the detoxification recycling amelioration or treatment of waste materials and pollutants by naturally-occurring microbial strains or associations or recombinant organisms. Areas of particular interest include: biochemistry of biodegradative pathways genetics of biodegradative organisms and the development of recombinant biodegrading organisms enhancement of naturally-occurring biodegradative properties and activities applications of biodegradation and biotransformation technology e.g. to sewage heavy metals organohalogens high-COD wastes straight- branched-chain and aromatic hydrocarbons modelling and scale-up of laboratory processes and design of bioreactor systems international standardisation economic and legal aspects of biological treatment of waste. Subscribers to Antonie van Leeuwenhoek will receive Biodegradation as a supplementary volume included in their subscription at a reduced price. Biodegradation can also be purchased separately.

  • Impact factor
    2.17
  • 5-year impact
    2.20
  • Cited half-life
    7.00
  • Immediacy index
    0.44
  • Eigenfactor
    0.00
  • Article influence
    0.59
  • Website
    Biodegradation website
  • Other titles
    Biodegradation (Dordrecht: En ligne), Biodegradation, Biodegradation (Dordrecht) [ressource électronique]
  • ISSN
    1572-9729
  • OCLC
    299862581
  • Material type
    Periodical, Internet resource
  • Document type
    Internet Resource, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at www.springerlink.com)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Granules were observed after more than two years of operation in two semi-continuously fed intermittently aerated reactors treating swine wastewater with aerobic:anoxic cycles of 1:1 h and 1:4 h. Subsequently, the granules and flocs were compared with respect to physical characteristics, activity, and microbial community structure. Granules exhibited higher specific nitrification and denitrification rates than flocs. However, once granule structural integrity was disrupted, the rates decreased to levels similar to those of flocs. Membrane hybridizations using 16S rRNA-targeted probes showed that ammonia oxidizing bacteria populations in flocs and granules were dominated by Nitrosomonas and Nitrosococcus mobilis. Granules provided better conditions for Nitrospira compared to flocs. The diversities of the dominant bacterial populations in granules and flocs were not significantly different. Our findings highlight the importance of structural integrity of granules to their nitrogen removing activity.
    Biodegradation 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
    Biodegradation 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, denitrification of ammonium-reach anaerobic sludge digester liquor was investigated during start-up periods of two laboratory-scale "fill-and-draw" reactors. One reactor was fed with a single carbon source (ethanol), whereas the other reactor was fed with a complex carbon source (fusel oil). During two acclimation experiments, the structure of microbial community involved in denitrification was analyzed using 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis fingerprints and fluorescent in situ hybridization. The characteristics of the mixed liquor were additionally supported by regular measurements of nitrate uptake rates. The addition of fusel oil and ethanol resulted in a significant enhancement of the denitrification rate and efficiency combined with the increasing volumetric addition of sludge digester liquor up to 15 % of the reactor volume. The microbiological analyses revealed that the addition of sludge digester liquor as well as both external carbon sources (fusel oil and ethanol) did not affect the structure of microbial communities in a severe way. In both reactors, Curvibacter sp. and Azoarcus sp. were found as the most abundant representatives of denitrifiers.
    Biodegradation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many ecosystems are currently co-contaminated with pesticides and heavy metals, such as chlorpyrifos and cadmium. A promising strategy to remediate mixed chlorpyrifos-cadmium-contaminated sites is the use of chlorpyrifos-degrading bacteria endowed with cadmium removal capabilities. In this work, a gene coding for synthetic phytochelatins (EC20) with high cadmium-binding capacity was introduced into a chlorpyrifos-degrading bacterium, Stenotrophomonas sp. YC-1, resulting in an engineered strain with both cadmium accumulation and chlorpyrifos degradation capabilities. To improve the cadmium-binding efficiency of whole cells, EC20 was displayed on the cell surface of Stenotrophomonas sp. YC-1 using the truncated ice nucleation protein (INPNC) anchor. The surface localization of the INPNC-EC20 fusion protein was demonstrated by cell fractionation, Western blot analysis, and immunofluorescence microscopy. Expression of EC20 on the cell surface not only improved cadmium binding, but also alleviated the cellular toxicity of cadmium. As expected, the chlorpyrifos degradation rate was reduced in the presence of cadmium for cells without EC20 expression. However, expression of EC20 (higher cadmium accumulation) completely restored the level of chlorpyrifos degradation. These results demonstrated that EC20 expression not only enhanced cadmium accumulation, but also reduced the toxic effect of cadmium on chlorpyrifos degradation.
    Biodegradation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vinyl chloride (VC) is a known human carcinogen and common groundwater contaminant. Reductive dechlorination of VC to non-toxic ethene under anaerobic conditions has been demonstrated at numerous hazardous waste sites. However, VC disappearance without stoichiometric production of ethene has also been observed at some sites and in microcosms. In this study we identify an organism responsible for this observation in presumably anaerobic microcosms and conclude that oxygen was not detectable based on a lack of color change from added resazurin. This organism, a Mycobacterium sp. closely related to known VC oxidizing strains, was present in high numbers in 16S rRNA gene clone libraries from a groundwater microcosm. Although the oxidation/reduction indicator resazurin remained in the clear reduced state in these studies, these results suggest inadvertent oxygen contamination occurred. This study helps to elucidate the dynamic behavior of chlorinated ethenes in contaminated groundwater, through the isolation of a strictly aerobic organism that may be responsible for at least some disappearance of VC without the concomitant production of ethene in groundwater considered anaerobic.
    Biodegradation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a novel microrespirometric method to characterize the inhibitory effects due to heavy metals on activated sludge treatment. This method was based on pulse dynamic respirometry and involved the injection of several pulses of substrate and inhibitors, of increasing concentration. Furthermore, we evaluated the inhibitory effects of heavy metals (copper and zinc), substrate and biomass concentrations, and pH on activated sludge activity. While higher biomass concentrations counteracted the inhibitory effects of both copper and zinc, higher substrate concentrations predominantly augmented the inhibitory effect of copper but no significant change in inhibition by zinc was observed. pH had a clear but relatively small effect on inhibition, partially explained by thermodynamic speciation. We determined the key kinetic parameters; namely, the half saturation constant (K S ) and the maximum oxygen uptake rate (OUR max ). The results showed that higher heavy metal concentrations substantially decreased K S and OUR max suggesting that the inhibition was uncompetitive.
    Biodegradation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A mathematical model system was derived to describe the kinetics of ammonium nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium. The model incorporates diffusive mass transport and Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A batch test was conducted to observe the nitrification of ammonium-nitrogen ([Formula: see text]-N) and the growth of nitrifying biomass. The compositions of nitrifying bacterial community in the batch kinetic test were analyzed using PCR-DGGE method. The experimental results show that the most staining intensity abundance of bands occurred on day 2.75 with the highest biomass concentration of 46.5 mg/L. Chemostat kinetic tests were performed independently to evaluate the biokinetic parameters used in the model prediction. In the column test, the removal efficiency of [Formula: see text]-N was approximately 96 % while the concentration of suspended nitrifying biomass was approximately 16 mg VSS/L and model-predicted biofilm thickness reached up to 0.21 cm in the steady state. The profiles of denaturing gradient gel electrophoresis (DGGE) of different microbial communities demonstrated that indigenous nitrifying bacteria (Nitrospira and Nitrobacter) existed and were the dominant species in the fixed biofilm process.
    Biodegradation 08/2014;
  • Biodegradation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial community in soil. The current study provides information on the response of soil bacterial, archaeal and fungal communities during the degradation of three priority pollutants and contributes to a knowledge base that can inform the development of effective bioremediation strategies for contaminated sites.
    Biodegradation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.
    Biodegradation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, an advanced wastewater treatment process, the denitrifying phosphorus/side stream phosphorus removal system (DPR-Phostrip), was developed for the purpose of enhancing denitrifying phosphorus removal. The enrichment of denitrifying phosphorus-accumulating organisms (DPAOs) and the microbial community structure of DPR-Phostrip were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the metabolic activity of seed sludge and activated sludge collected after 55 days of operation were evaluated by Biolog™ analysis. This experimental study of DPR-Phostrip operation showed that nutrients were removed effectively, and denitrifying phosphorus removal was observed during the pre-anoxic period. PCR-DGGE analysis indicated that DPR-Phostrip supported DPAO growth while inhibiting PAOs and GAOs. The major dominant species in DPR-Phostrip were Bacteroidetes bacterium, Saprospiraceae bacterium, and Chloroflexi bacterium. Moreover, the functional diversity indices calculated on the basis of Biolog analysis indicated that DPR-Phostrip had almost no effect on microbial community diversity but was associated with a shift in the dominant species, which confirms the results of the PCR-DGGE analysis. The results for average well color development, calculated via Biolog analysis, showed that DPR-Phostrip had a little impact on the metabolic activity of sludge. Further principal component analysis suggested that the ability to utilize low-molecular-weight organic compounds was reduced in DPR-Phostrip.
    Biodegradation 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The biodegradation of the polycyclic aromatic hydrocarbon phenantherene by the rhizobacterial strain Ensifer meliloti P221, isolated from the root zone of plant grown in PAH-contaminated soil was studied. Bacterial growth and phenanthrene degradation under the influence of root-exuded organic acids were also investigated. Analysis of the metabolites produced by the strain by using thin-layer chromatography, gas chromatography, high-pressure liquid chromatography, and mass-spectrometry revealed that phenanthrene is bioconverted via two parallel pathways. The first, major pathway is through terminal aromatic ring cleavage (presumably at the C3-C4 bond) producing benzocoumarin and 1-hydroxy-2-naphthoic acid, whose further degradation with the formation of salicylic acid is difficult or is very slow. The second pathway is through the oxidation of the central aromatic ring at the C9-C10 bond, producing 9,10-dihydro-9,10-dihydroxyphenanthrene, 9,10-phenanthrenequinone, and 2,2'-diphenic acid. This is the first time that the dioxygenation of phenanthrene at the C9 and C10 atoms, proven by identification of characteristic metabolites, has been reported for a bacterium of the Ensifer genus.
    Biodegradation 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anaerobic reductive dechlorination of hexachlorobenzene (HCB) and three isomers of tetrachlorobenzene (TeCB) (1,2,3,4-, 1,2,3,5- and 1,2,4,5-TeCB) was investigated in microcosms containing chloroaromatic contaminated river sediment. All chlorobenzenes were dechlorinated to dichlorobenzene (DCB) or monochlorobenzene. From the sediment, a methanogenic sediment-free culture was obtained which dechlorinated HCB, pentachlorobenzene, three TeCB isomers, three trichlorobenzene (TCB) isomers (1,2,3-, 1,2,4- and 1,3,5-TCB) and 1,2-DCB. Dechlorination involved multiple pathways including the removal of doubly flanked, singly flanked and isolated chlorine substituents. 454-pyrosequencing of partial bacterial 16S rRNA genes amplified from selected chlorobenzene dechlorinating sediment-free enrichment cultures revealed the presence of a variety of bacterial species, including Dehalobacter and Dehalococcoides mccartyi, that were previously documented as organohalide respiring bacteria. A genus with apparent close relationship to Desulfitobacterium that also has been associated with organohalide respiration, composed the major fraction of the operational taxonomic units (OTUs). Another major OTU was linked with Sedimentibacter sp., a genus that was previously identified in strict co-cultures of consortia reductively dehalogenating chlorinated compounds. Our data point towards the existence of multiple interactions within highly chlorinated benzene dechlorinating communities.
    Biodegradation 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microbial degradation of dibenzothiophene (DBT) beyond 3-hydroxy-2-formylbenzothiophene (HFBT), a commonly detected metabolite of the Kodama pathway for DBT metabolism, and the catabolic intermediates leading to its mineralization are not fully understood. The enrichment cultures cultivated from crude oil contaminated soil led to isolation of ERI-11; a natural mixed culture, selected for its ability to deplete DBT in basal salt medium (BSM). A bacterial strain isolated from ERI-11, and tentatively named A11, degraded more than 90 % of the initial DBT (270 µM), present as the sole carbon and sulfur source, in 72 h. Gas chromatography-mass spectrophotometry (GC-MS) analyses of the DBT degrading A11 culture medium extracts led to detection of HFBT. The metabolite HFBT, produced using A11, was used in degradation assays to evaluate its metabolism by the bacteria isolated in this study. Ultra violet-visible spectrophotometry and high-performance liquid chromatography analyses established the ability of the strain A11 to deplete HFBT, present as the sole sulfur and carbon source in BSM. GC-MS analyses showed the presence of 2-mercaptobenzoic acid in the HFBT degrading A11 culture extracts. The findings in this study establish that the environmental isolate A11 possesses the metabolic capacity to degrade DBT beyond the metabolite HFBT. The compound 2-mercaptobenzoic acid is an intermediate formed on HFBT degradation by A11.
    Biodegradation 04/2014;

Related Journals