Biodegradation (Biodegradation)

Publisher: Kluwer Online, Springer Verlag

Journal description

Biodegradation publishes papers on all aspects of science pertaining to the detoxification recycling amelioration or treatment of waste materials and pollutants by naturally-occurring microbial strains or associations or recombinant organisms. Areas of particular interest include: biochemistry of biodegradative pathways genetics of biodegradative organisms and the development of recombinant biodegrading organisms enhancement of naturally-occurring biodegradative properties and activities applications of biodegradation and biotransformation technology e.g. to sewage heavy metals organohalogens high-COD wastes straight- branched-chain and aromatic hydrocarbons modelling and scale-up of laboratory processes and design of bioreactor systems international standardisation economic and legal aspects of biological treatment of waste. Subscribers to Antonie van Leeuwenhoek will receive Biodegradation as a supplementary volume included in their subscription at a reduced price. Biodegradation can also be purchased separately.

Current impact factor: 2.49

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.492
2012 Impact Factor 2.173
2011 Impact Factor 2.017
2010 Impact Factor 2.012
2009 Impact Factor 1.873
2008 Impact Factor 2.055
2006 Impact Factor 1.579
2005 Impact Factor 1.714
2004 Impact Factor 1.388
2003 Impact Factor 0.819
2002 Impact Factor 1.023
2001 Impact Factor 0.831
2000 Impact Factor 1.109
1999 Impact Factor 0.785
1998 Impact Factor 1.054
1997 Impact Factor 1.571
1996 Impact Factor 1.971
1995 Impact Factor 1.466

Impact factor over time

Impact factor

Additional details

5-year impact 2.20
Cited half-life 7.00
Immediacy index 0.44
Eigenfactor 0.00
Article influence 0.59
Website Biodegradation website
Other titles Biodegradation (Dordrecht: En ligne), Biodegradation, Biodegradation (Dordrecht) [ressource électronique]
ISSN 1572-9729
OCLC 299862581
Material type Periodical, Internet resource
Document type Internet Resource, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aerobic degradation of bis-aryl ethers like the antimicrobial triclosan typically proceeds through oxygenase-dependent catabolic pathways. Although several studies have reported on bacteria capable of degrading triclosan aerobically, there are no reports describing the genes responsible for this process. In this study, a gene encoding the large subunit of a putative triclosan oxygenase, designated tcsA was identified in a triclosan-degrading fosmid clone from a DNA library of Sphingomonas sp. RD1. Consistent with tcsA's similarity to two-part dioxygenases, a putative FMN-dependent ferredoxin reductase, designated tcsB was found immediately downstream of tcsA. Both tcsAB were found in the midst of a putative chlorocatechol degradation operon. We show that RD1 produces hydroxytriclosan and chlorocatechols during triclosan degradation and that tcsA is induced by triclosan. This is the first study to report on the genetics of triclosan degradation.
    Biodegradation 05/2015; 26(3). DOI:10.1007/s10532-015-9730-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heavy contamination of soil with crude oil has caused significant negative environmental impacts and presents substantial hazards to human health. To explore a highly efficient bioaugmentation strategy for these contaminations, experiments were conducted over 180 days in soil heavily contaminated with crude oil (50,000 mg kg(-1)), with four treatments comprised of Bacillus subtilis inoculation with no further inoculation (I), or reinoculation after 100 days with either B. subtilis (II), Acremonium sp.(III), or a mixture of both organisms (IV). The removal values of total petroleum hydrocarbons were 60.1 ± 2.0, 60.05 ± 3.0, 71.3 ± 5.2 and 74.2 ± 2.7 % for treatment (I-IV), respectively. Treatments (III-IV) significantly enhanced the soil bioremediation compared with treatments (I-II) (p < 0.05). Furthermore, significantly (p < 0.05) greater rates of degradation for petroleum hydrocarbon fractions were observed in treatments (III-IV) compared to treatments (I-II), and this was especially the case with the degradative rates for polycyclic aromatic hydrocarbons and crude oil heavy fractions. Dehydrogenase activity in treatment (III-IV) containing Acremonium sp. showed a constant increase until the end of experiments. Therefore reinoculation with pure fungus or fungal-bacterial consortium should be considered as an effective strategy in bioaugmentation for soil heavily contaminated with crude oil.
    Biodegradation 05/2015; 26(3). DOI:10.1007/s10532-015-9732-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.
    Biodegradation 04/2015; 26(3). DOI:10.1007/s10532-015-9729-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has contaminated many military sites. Recently, attempts to remediate these sites have focused on biostimulation to promote RDX biodegradation. Although many RDX degrading isolates have been obtained in the laboratory, little is known about the potential of microorganisms to degrade this chemical while existing in a soil community. The current study examined and compared the RDX degrading communities in four soil slurries to elucidate the potential of natural systems to degrade this chemical. These soils were selected as they had no previous exposure to RDX, therefore their microbial communities offered an excellent baseline to determine changes following RDX degradation. High throughput sequencing was used to determine which phylotypes experienced an increase in relative abundance following RDX degradation. For this, total genomic DNA was sequenced from (1) the initial soil, (2) soil slurry microcosms following RDX degradation and (3) control soil slurry microcosms without RDX addition. The sequencing data provided valuable information on which phylotypes increased in abundance following RDX degradation compared to control microcosms. The most notable trend was the increase in abundance of Brevundimonas and/or unclassified Bacillaceae 1 in the four soils studied. Although isolates of the family Bacillaceae 1 have previously been linked to RDX degradation, isolates of the genus Brevundimonas have not been previously associated with RDX degradation. Overall, the data suggest these two phylotypes have key roles in RDX degradation in soil communities.
    Biodegradation 04/2015; 26(3). DOI:10.1007/s10532-015-9731-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of Cu(II) shock loads on shortcut biological nitrogen removal during a continuous-flow anoxic/aerobic process was investigated using a hybrid biofilm nitrogen removal reactor. The results demonstrated that [Formula: see text]-N removal was not affected by any Cu(II) shock loads, but TN removal was inhibited by Cu(II) of shock loads of 2 and 5 mg/L, and the performance could not be recovered at 5 mg/L. Furthermore, the TN removal pathway also changed in response to Cu(II) concentrations of 2 and 5 mg/L. Denitrification is more sensitive to Cu(II) shock in SBNR processes. Examination of amoA communities using quantitative PCR showed that the abundance of AOB in the aerobic tank decreased after Cu(II) shock with 5 mg/L, which supported the observed changes in [Formula: see text]-N removal efficiency. The abundance of denitrification genes declined obviously at Cu(II) concentrations of 2 and 5 mg/L, which explained the decreased TN removal efficiency at those concentrations.
    Biodegradation 04/2015; 26(3). DOI:10.1007/s10532-015-9728-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytoestrogens are plant-derived hormonally-active compounds known to cause varied reproductive, immunosuppressive and behavioral effects in vertebrates. In this study, biodegradation of luteolin, a common phytoestrogen, was investigated during incubation with endophytic fungus Phomopsis liquidambari. The optimum concentration of luteolin as sole carbon source supplied in culture was 200 mg L(-1), which allowed 97 and 99 % degradation of luteolin by P. liquidambari in liquid culture and soil conditions, respectively. The investigation of the fungal metabolic pathway showed that luteolin was first decomposed to caffeic acid and phloroglucinol. These intermediate products were degraded to protocatechuic acid and hydroxyquinol, respectively, and then rings were opened by ring-cleavage dioxygenases. Two novel genes encoding the protocatechuate 3,4-dioxygenase and hydroxyquinol 1,2-dioxygenase were successfully cloned. Reverse-transcription quantitative polymerase chain reaction demonstrated that expression levels of mRNA of these two genes increased significantly after P. liquidambari was induced by the intermediate products caffeic acid and phloroglucinol, respectively. These results revealed that P. liquidambari can biodegrade luteolin efficiently and could potentially be used to bioremediate phytoestrogen contamination.
    Biodegradation 03/2015; 26(3). DOI:10.1007/s10532-015-9727-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: An aerobic bacterial strain M11 capable of degrading dibutyl phthalate (DBP) was isolated and identified as Camelimonas sp. This strain could not grow on dialkyl phthalates, including dimethyl, diethyl, dipropyl, dibutyl and dipentyl phthalate, but suspensions of cells could transform these compounds to phthalate via corresponding monoalkyl phthalates. The degradation kinetics of DBP was best fitted by first-order kinetic equation. During growth in Brucella Selective Medium, M11 produced the high amounts of non-DBP-induced intracellular hydrolase in the stationary phase. The DBP hydrolase gene of M11 was cloned, and the recombinant DBP hydrolase had a high optimum degradation temperature (50 °C), and a wide range of pH and temperature stability.
    Biodegradation 03/2015; 26(2). DOI:10.1007/s10532-015-9725-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.
    Biodegradation 03/2015; 26(2). DOI:10.1007/s10532-015-9724-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently we showed that during the degradation of sulfadiazine (SDZ) by Microbacterium lacus strain SDZm4 the principal metabolite 2-aminopyrimidine (2-AP) accumulated to the same molar amount in the culture as SDZ disappeared (Tappe et al. Appl Environ Microbiol 79:2572-2577, 2013). Although 2-AP is considered a recalcitrant agent, long-term lysimeter experiments with (14)C-pyrimidine labeled SDZ ([(14)C]pyrSDZ) provided indications for substantial degradation of the pyrimidine moiety of the SDZ molecule. Therefore, we aimed to enrich 2-AP degrading bacteria and isolated a pure culture of a Terrabacter-like bacterium, denoted strain 2APm3. When provided with (14)C-labeled SDZ, M. lacus strain SDZm4 degraded [(14)C]pyrSDZ to [(14)C]2-AP. Resting cells of 2APm3 at a concentration of 5 × 10(6) cells ml(-1) degraded 62 µM [(14)C]2-AP to below the detection limit (0.6 µM) within 5 days. Disappearance of 2-AP resulted in the production of at least two transformation products (M1 and M2) with M2 being identified as 2-amino-4-hydroxypyrimidine. After 36 days, the transformation products disappeared and 83 % of the applied [(14)C]2-AP radioactivity was trapped as (14)CO2. From this we conclude that a consortium of two species should be able to almost completely degrade SDZ in soils.
    Biodegradation 02/2015; 26(2). DOI:10.1007/s10532-015-9722-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: The widespread industrial use of organobromines which are known persistent organic pollutants has led to their accumulation in sediments and water bodies causing harm to animals and humans. While degradation of organochlorines by bacteria is well documented, information regarding degradation pathways of these recalcitrant organobromines is scarce. Hence, their fates and effects on the environment are of concern. The present study shows that a tropical marine yeast, Yarrowia lipolytica NCIM 3589 aerobically degrades bromoalkanes differing in carbon chain length and position of halogen substitution viz., 2-bromopropane (2-BP), 1-bromobutane (1-BB), 1,5 dibromopentane (1,5-DBP) and 1-bromodecane (1-BD) as seen by an increase in cell mass, release of bromide and concomitant decrease in concentration of brominated compound. The amount of bromoalkane degraded was 27.3, 21.9, 18.0 and 38.3 % with degradation rates of 0.076, 0.058, 0.046 and 0.117/day for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. The initial product formed respectively were alcohols viz., 2-propanol, 1-butanol, 1-bromo, 5-pentanol and 1-decanol as detected by GC-MS. These were further metabolized to fatty acids viz., 2-propionic, 1-butyric and 1-decanoic acid eventually leading to carbon dioxide formation. Neither higher chain nor brominated fatty acids were detected. An inducible extracellular dehalogenase responsible for removal of bromide was detected with activities of 21.07, 18.82, 18.96 and 26.67 U/ml for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. We report here for the first time the proposed aerobic pathway of bromoalkane degradation by an eukaryotic microbe Y. lipolytica 3589, involving an initial hydrolytic dehalogenation step.
    Biodegradation 02/2015; 26(2). DOI:10.1007/s10532-015-9721-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because H2S emitted by landfill sites has seriously endangered human health, its removal is urgent. H2S removal by use of an autotrophic denitrification landfill biocover has been reported. In this process, nitrate-reducing and sulfide-oxidizing bacteria use a reduced sulfur source as electron donor when reducing nitrate to nitrogen gas and oxidizing sulfur compounds to sulfate. The research presented here was performed to investigate the possibility of endogenous mitigation of H2S by autotrophic denitrification of landfill waste. The sulfide oxidation bioprocess accompanied by nitrate reduction was observed in batch tests inoculated with mineralized refuse from a landfill site. Repeated supply of nitrate resulted in rapid oxidation of the sulfide, indicating that, to a substantial extent, the bioprocess may be driven by functional microbes. This bioprocess can be realized under conditions suitable for the autotrophic metabolic process, because the process occurred without addition of acetate. H2S emissions from landfill sites would be substantially reduced if this bioprocess was introduced.
    Biodegradation 02/2015; 26(2). DOI:10.1007/s10532-015-9720-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: A bacterium was isolated from activated sewage sludge that has the ability to use ibuprofen as its sole carbon and energy source. Phylogenetic analysis of the 16S rRNA gene sequence placed the strain in the Variovorax genus within the β-proteobacteria. When grown on ibuprofen it accumulated a transient yellow intermediate that disappeared upon acidification, a trait consistent with meta ring-fission metabolites. GC/MS analysis of derivatized culture supernatant yielded two spectra consistent with trihydroxyibuprofen bearing all three hydroxyl groups on the aromatic ring. These metabolites were only detected when 3-fluorocatechol, a meta ring-fission inhibitor, was added to Ibu-1 cultures and the supernatant was then derivatized with aqueous acetic anhydride and diazomethane. These findings suggest the possibility of ibuprofen metabolism proceeding via a trihydroxyibuprofen meta ring-fission pathway. Identical spectra, consistent with these putative ring-hydroxylated trihydroxyibuprofen metabolites, were also obtained from ibuprofen-spiked sewage sludge, but only when it was poisoned with 3-fluorocatechol. The presence of the same trihydroxylated metabolites in both spiked sewage sludge and culture supernatants suggests that this trihydroxyibuprofen extradiol ring-cleavage pathway for the degradation of ibuprofen may have environmental relevance.
    Biodegradation 02/2015; 26(2). DOI:10.1007/s10532-015-9719-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aerosol delivery was evaluated for distributing biostimulation and bioaugmentation amendments in vadose zones. This technique involves transporting amendments as micron-scale aerosol droplets in injected gas. Microcosm experiments were designed to characterize reductive dechlorination of trichloroethene (TCE) under unsaturated conditions when delivering components as aerosols. Delivering amendments and/or microbes as aqueous aerosols resulted in complete dechlorination of TCE, similar to controls operated under saturated conditions. Reductive dechlorination was achieved with manual injection of a bioaugmentation culture suspended in soybean oil into microcosms. However, aerosol delivery of the culture in soybean oil induced little reductive dechlorination activity. Overall, the results indicate that delivery as aqueous aerosols may be a viable option for delivery of amendments to enhance vadose zone bioremediation at the field-scale.
    Biodegradation 01/2015; 26(2). DOI:10.1007/s10532-015-9718-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although information about the ability of some filamentous fungi to biodegrade organophosphonates is available, the knowledge about accompanying changes in fungal metabolism is very limited. The aim of our study was to determine the utilization of the chosen, structurally diverse aminophosphonates by Aspergillus terreus (Thom), in the context of the behaviour of this fungus while growing in unfavourable conditions, namely the lack of easily available phosphates. We found that all the studied compounds were utilized by fungus as nutritive sources of phosphorus, however, their effect on the production of fungal biomass depended on their structure. We also observed an interesting change in the metabolism of A. terreus; namely the overproduction of 2,4-di-tert-butylphenol (2,4-DTBP), which is known to possess fungistatic activity. In the case of our study, the biosynthesis of this compound was induced by phosphorus starvation, caused either by the lack of that element in the medium, or the poor degradation of phosphonate.
    Biodegradation 11/2014; 26(1). DOI:10.1007/s10532-014-9716-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: BTEX biodegradation by a mixed community of micro-organisms offers a promising approach in terms of cost-effectiveness and elimination of secondary pollution. Two bacterial strains, Pseudomonas putida F1 and Pseudomonas stutzeri OX1 were chosen to formulate synthetic consortia based on their ability to biodegrade the mono-aromatic compounds. Benzene and toluene supported the growth of both the strains; while ethyl benzene and o-xylene were only utilized as growth substrates by P. putida F1 and P. stutzeri OX1, respectively. In a mixed substrate system, P. putida F1 exhibited incomplete removal of o-xylene while P. stutzeri OX1 displayed cometabolic removal of ethyl benzene with dark coloration of the growth medium. The biodegradation potential of the two Pseudomonas species complemented each other and offered opportunities to explore their performance as a co-culture for enhanced BTEX biodegradation. Several microbial formulations were concocted and their BTEX biodegradation characteristics were evaluated. Mixed culture biodegradation ascertained the advantages of the co-culture over the individual Pseudomonas species. This study also emphasized the significance of inoculum density and species proportion while concocting preselected micro-organisms for enhanced BTEX biodegradation.
    Biodegradation 10/2014; 26(1). DOI:10.1007/s10532-014-9715-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1,4-Dioxane (dioxane) is relatively recalcitrant to biodegradation, and its physicochemical properties preclude effective removal from contaminated groundwater by volatilization or adsorption. Through this microcosm study, we assessed the biodegradation potential of dioxane for three sites in California. Groundwater and sediment samples were collected at various locations at each site, including the presumed source zone, middle and leading edge of the plume. A total of 16 monitoring wells were sampled to prepare the microcosms. Biodegradation of dioxane was observed in 12 of 16 microcosms mimicking natural attenuation within 28 weeks. Rates varied from as high as 3,449 ± 459 µg/L/week in source-zone microcosms to a low of 0.3 ± 0.1 µg/L/week in microcosms with trace level of dioxane (<10 µg/L as initial concentration). The microcosms were spiked with (14)C-labeled dioxane to assess the fate of dioxane. Biological oxidizer-liquid scintillation analysis of bound residue infers that (14)C-dioxane was assimilated into cell material only in microcosms exhibiting significant dioxane biodegradation. Mineralization was also observed per (14)CO2 recovery (up to 44 % of the amount degraded in 28 weeks of incubation). Degradation and mineralization activity significantly decreased with increasing distance from the contaminant source area (p < 0.05), possibly due to less acclimation. Furthermore, both respiked and repeated microcosms prepared with source-zone samples from Site 1 confirmed relatively rapid dioxane degradation (i.e., 100 % removal by 20 weeks). These results show that indigenous microorganisms capable of degrading dioxane are present at these three sites, and suggest that monitored natural attenuation should be considered as a remedial response.
    Biodegradation 09/2014; 26(1). DOI:10.1007/s10532-014-9714-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fate of fluorinated compounds in the environment, especially polyfluorinated aromatics, is a matter of great concern. In this work, 4-Fluoroaniline (4-FA), 2,4-Difluoroanilines (2,4-DFA), and 2,3,4-Trifluoroanilines (2,3,4-TFA), were chosen as the target pollutants to study their biodegradability under aerobic conditions. The required enriched time of the mixed bacterial culture for degrading 4-FA, 2,4-DFA, and 2,3,4-TFA was 26, 51, and 165 days, respectively, which suggested that the longer enrichment time was required with the increase of fluorine substitution. At the initial concentrations of 100-200 mg L(-1), the 4-FA, 2,4-DFA, and 2,3,4-TFA could be degraded completely by the mixed bacterial culture. The maximum specific degradation rates of 4-FA, 2,4-DFA, and 2,3,4-TFA were 22.48 ± 0.55, 15.27 ± 2.04, and 8.84 ± 0.93 mg FA (g VSS h)(-1), respectively. Also, the three FAs enriched cultures showed certain potential of degrading other two FAs. The results from enzyme assay suggested the expression of meta-cleavage pathways during three FAs degradation. The denaturing gradient gel electrophoresis analysis revealed that unique bacterial communities were formed after FAs enrichment and these were principally composed of β-Proteobacteria, Oscillatoriophycideae, δ-Proteobacteria, α-Proteobacteria, Thermales, Xanthomonadales, Deinococci, Flavobacteriia, and Actinobacteridae. The Shannon-Wiener indexes in three FAs enriched culture decreased with the increase of fluorine substitution, indicating the significant effect of fluorine substitution on the microbial diversity. These findings supply important information on the fate of three FAs under aerobic environment, and the bacterial communities in their degradation systems.
    Biodegradation 09/2014; 26(1). DOI:10.1007/s10532-014-9704-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80 % after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.
    Biodegradation 09/2014; 26(1). DOI:10.1007/s10532-014-9713-2