Harmful Algae (HARMFUL ALGAE)

Publisher: Elsevier

Journal description

This new journal will provide a forum to promote knowledge of harmful microalgae, including cyanobacteria, as well as monitoring, management and control of these organisms. Both original research and review papers will be considered. Papers dealing with the following aspects of harmful microalgae and cyanobacteria in marine and fresh waters will be considered: the distribution, life histories and taxonomy of harmful microalgae; the physiology and toxicology of harmful microalgae; harmful microalgal bloom ecology; trophic, socio-economic, public health and aquacultural impacts of harmful microalgal bloom events; occurrence, methods of detection and chemical structure of toxins in harmful microalgae, cyanobacteria, foodwebs and seafood; factors controlling toxin production, biosynthesis and chemical ecology.

Current impact factor: 3.87

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.874
2013 Impact Factor 3.339
2012 Impact Factor 2.901
2011 Impact Factor 3.083
2010 Impact Factor 4.28
2009 Impact Factor 2.5
2008 Impact Factor 2.688
2007 Impact Factor 2.397
2006 Impact Factor 2.46
2005 Impact Factor 2.709

Impact factor over time

Impact factor

Additional details

5-year impact 3.77
Cited half-life 5.40
Immediacy index 0.88
Eigenfactor 0.01
Article influence 0.87
Website Harmful Algae website
Other titles Harmful algae (Online)
ISSN 1568-9883
OCLC 50177604
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • Harmful Algae 11/2015; 49:58-67. DOI:10.1016/j.hal.2015.09.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ciguatera fish poisoning is a common form of seafood poisoning caused by toxins (ciguatoxins) that accumulate in demersal (reef) food webs. The precursors of ciguatoxins are produced by dinoflagellates of the genus Gambierdiscus, and enter the food web via herbivory and detritivory. The Gambierdiscus genus was recently revised and new research on the physiology and ecology of the revised species is needed. While it has been demonstrated that Gambierdiscus spp. are predominately epiphytic, the variability in epiphytic behavior among the various Gambierdiscus species is not known. Five Gambierdiscus species isolated from the Greater Caribbean Region were the focus of this study (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, and G. yasumotoi). Cells of Gambierdiscus were grown in wells with algae fragments from eight different macroalgal host genera (Acanthophora, Caulerpa, Dasya, Derbesia, Dictyota, Laurencia, Polysiphonia, and Ulva) where the epiphytic behavior and growth of the different Gambierdiscus species were monitored over 29 days. The results of this experiment demonstrate that epiphytic behavior (growth and attachment) differs among the Gambierdiscus species toward the various macroalgal hosts. Results tended to be specific to Gambierdiscus – host pairings with few commonalities in the way a particular Gambierdiscus species interacted across hosts or how the various Gambierdiscus species responded to a particular host. The Gambierdiscus – host pairings that resulted in the highest growth and attachment combinations were examined in terms of known cellular toxicity and host palatability to determine which pairings could represent the most likely vectors for the transfer of ciguatoxins (or precursors) into the demersal food web. Two pairings, Gambierdiscus belizeanus – Polysiphonia and G. belizeanus – Dictyota, best met these criteria, providing a hypothetical approach to better focus sampling and monitoring efforts on such potential vectors in the benthic environment.
    Harmful Algae 09/2015; 49:29-39. DOI:10.1016/j.hal.2015.08.005
  • Harmful Algae 09/2015; 48:30-36. DOI:10.1016/j.hal.2015.06.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of cyanobacterial blooms is often accompanied by a variety of toxic secondary metabolites known as cyanotoxins. Anatoxin-a (ATX-a) is a highly toxic cyanobacterial neurotoxin synthesized by numerous species (e.g., Aphanizomenon, Anabaena and Oscillatoria) that has received much public attention. In this study, we used molecular methods (PCR and qPCR) to track the presence and dynamics of ATX-a-producing cyanobacteria, Aphanizomenon and Anabaena in Lake Dianchi, China based on the anaC and cpcBA-IGS genes over a 23-month period (from June 2010 to April 2012). Results revealed that Aphanizomenon was the major potential ATX-a producer in Lake Dianchi and that they were most abundant in early spring and least abundant in summer, coinciding with observed Aphanizomenon blooms. It was found that the proportion of ATX-a toxigenic cells was lower in the northern part of the lake (2.1%) than the middle (16.7%) and southern parts (19.2%). The information on the spatio-temporal distributions of ATX-a-producing cyanobacteria obtained in this study will help to build management strategies to improve water quality for public health.
    Harmful Algae 09/2015; 48:63-68. DOI:10.1016/j.hal.2015.07.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microcystins (MCs) comprise a group of cyclic heptapeptide toxins that share a common backbone and have two variable l-amino acids that yield at least 21 known analogs of varying potency. These hepatotoxins and potential tumor promoters are produced by certain cyanobacteria, including Microcystis aeruginosa. The cyanobacterium M. aeruginosa blooms in freshwater lakes and can potentially co-occur with other species such as Aphanizomenon flos-aquae, which is targeted and harvested for the production of dietary supplements known as blue-green algae (BGA). BGA supplements are currently marketed in the U.S. and internationally as a product that may elevate mood, increase energy, and alleviate attention deficit hyperactivity disorder. However, the potential for BGA dietary supplements to be contaminated with MCs is of concern, and there are currently no validated methods for detection of MCs in these products. This research focused on establishing screening methods for toxic Microcystis and MCs in BGA supplements. A DNA-based method employing polymerase chain reaction (PCR) was used as a prescreening tool to evaluate the dietary supplements and to detect the presence of toxin genes (i.e., presence of toxic Microcystis). A rapid, sensitive surface plasmon resonance (SPR) biosensor, directed towards recognition of all MC forms, was also developed and validated. This improved SPR biosensor incorporates a commercial Adda-group antibody (Ab) that has the capacity for broader recognition of MCs than previously developed sensors for BGA supplements that rely solely on an arginine-reactive Ab and can quantitate MC levels down to 0.24 ng/mL (equivalent to 0.24 μg per gram of BGA supplement) in less than 10 min. Such a rapid, quantitative screening method may allow for further surveillance of BGA products to assist risk assessment efforts, establishment of regulatory guidance levels, and response to potential consumer complaints related to BGA products. The PCR technique and SPR biosensor may be used in concert as prescreening and screening tools, respectively or individually, thereby limiting the number of samples that must be evaluated with confirmatory methods.
    Harmful Algae 07/2015; 47. DOI:10.1016/j.hal.2015.05.001