Plant signaling & behavior (Plant Signal Behav)

Publisher: Taylor & Francis

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
ISSN 1559-2324

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • On author's personal website or departmental website immediately
    • On institutional repository or subject-based repository after either 12 months embargo
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • The publisher will deposit in on behalf of authors to a designated institutional repository including PubMed Central, where a deposit agreement exists with the repository
    • STM: Science, Technology and Medicine
    • Publisher last contacted on 25/03/2014
    • This policy is an exception to the default policies of 'Taylor & Francis'
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: (Abstract) Caffeine (1,3,7-trimethixanthine) is a typical purine alkaloid produced in more than 80 plant species. Its biological role is considered to strengthen plant's defense capabilities, directly as a toxicant to biotic attackers (allelopathy) and indirectly as an activator of defense system (priming). Caffeine is actively secreted into rhizosphere through primary root, and possibly affects the structure of microbe community nearby. The fungal community in coffee plant rhizosphere is enriched with particular species, including Trichoderma family, a mycoparasite that attacks and kills phytopathogens by coiling and destroying their hyphae. In the present study, the caffeine response of eight filamentous fungi, four mycoparasitic Trichoderma, and four prey phytopathogens, was examined. Results showed that allelopathic effect of caffeine on fungal growth and development was differential, being stronger on pathogens than on Trichoderma species. Upon confronting, the prey immediately ceased the growth, whereas the predator continued to grow, indicating active mycoparasitism to have occurred. Caffeine enhanced mycoparasitism up to 1.7-fold. Caffeine thus functions in a double-track manner against fungal pathogens: first by direct suppression of growth and development, and second by assisting their natural enemy. These observation suggest that caffeine is a powerful weapon in arms race between plants and pathogens by fostering enemy's enemy, and we propose the idea of "caffeine fostering" as the third role of caffeine.
    Plant signaling & behavior 11/2015; DOI:10.1080/15592324.2015.1113362
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root development. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1110662

  • Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1073870
  • [Show abstract] [Hide abstract]
    ABSTRACT: The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4',6'-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1107690
  • [Show abstract] [Hide abstract]
    ABSTRACT: Geminiviruses are ssDNA plant viruses that cause significant agricultural losses worldwide. The viruses do not encode a polymerase protein and must reprogram differentiated host cells to re-enter the S-phase of the cell cycle for the virus to gain access to the host-replication machinery for propagation. To date, three Beet curly top virus (BCTV) encoded proteins have been shown to restore DNA replication competency: the replication-initiator protein (Rep), the C2 protein, and the C4 protein. Ectopic expression of the BCTV C4 protein leads to a severe developmental phenotype characterized by extensive hyperplasia. We recently demonstrated that C4 interacts with 7 of the 10 members of the Arabidopsis thaliana SHAGGY-like protein kinase gene family and characterized the interactions of C4 and C4 mutants with AtSKs. Herein, we propose a model of how C4 functions.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1109758
  • [Show abstract] [Hide abstract]
    ABSTRACT: The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1106659
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have recently shown that the expression onset of a seedling-specific gene, PYK10, occurs in a cell-by-cell manner upon the transition from the embryonic to the postgerminative phase and during embryogenesis in seed maturation regulator mutants such as lec1, and implicated epigenetic mechanisms in the process. Here, the role of the NAI1 transcription factor required for PYK10 expression in the developmental switching of PYK10 was investigated. The cell-by-cell onset of PYK10-EGFP in lec1 embryo was still observed in the nai1 background, but at greatly reduced levels. Decreases in the level of the repressive histone mark, H3K27 trimethylation observed upon the transition to the postgeminative phase normally occurred in nai1. However, concomitant increases in the level of the active mark, H3K4 trimethylation observed in wild type was significantly compromised in nai1. These results indicate that the switching of PYK10 upon developmental phase transition involves two separable steps of chromatin state change.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1105418
  • [Show abstract] [Hide abstract]
    ABSTRACT: REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1) regulates redox homeostasis under stress, however the mechanism is mainly unknown. In a recent publication, we analyzed rrtf1 knockout (ko) and RRTF1 overexpressor lines of Arabidopsis thaliana and showed that RRTF1 plays a crucial role in reactive oxygen species (ROS) production. Ko line produces less and overexpressor lines constitutively high levels of ROS under stress, and the amount of ROS increases with increase in stress and the RRTF1 level in the plant. The transcription factor also activates systemic ROS signaling under stress. (1) In this report, we show that RRTF1 exerts different roles in young and old leaves. While RRTF1 enhances defense responses to high light (HL) stress in young leaves, it induces senescence and chlorosis in older leaves. These findings suggest that RRTF1 and/or RRTF1-mediated ROS signaling induce stress responses in an age-dependent manner, and the age-dependent alteration in the RRTF1 function might be important for the plant´s acclimation to the stress environment.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1051279
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce two protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1093715
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1103407
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 μSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 μSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1103406
  • [Show abstract] [Hide abstract]
    ABSTRACT: Callose, a linear β-1,3-glucan molecule, plays important roles in a variety of processes in angiosperms, including development and the response to biotic and abiotic stress. Despite the importance of callose deposition, our understanding of the roles of callose in rice reproductive development and the regulation of callose biosynthesis is limited. GLUCAN SYNTHASE-LIKE genes encode callose synthases (GSLs), which function in the production of callose at diverse sites in plants. Studies have shown that callose participated in plant reproductive development, and that the timely deposition and degradation of callose were essential for normal male gametophyte development. In this mini-review, we described conserved sequences found in GSL family proteins from monocotyledonous (Oryza sativa and Zea mays) and dicotyledonous (Arabidopsis thaliana and Glycine max) plants. We also describe the latest findings on callose biosynthesis and deposition during reproductive development and discuss future challenges in unraveling the mechanism of callose synthesis and deposition in higher plants.
    Plant signaling & behavior 10/2015; DOI:10.1080/15592324.2015.1062196