Epigenetics: official journal of the DNA Methylation Society (Epigenetics )

Description

Epigenetics is a new peer-reviewed journal available in print and online. This multidisciplinary journal publishes original research articles and reviews covering the latest aspects of epigenetic mechanisms and their regulation of diverse biological processes. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The overriding criteria for publication in Epigenetics are originality, scientific merit and general interest. The official journal of the Epigenetics Society.

  • Impact factor
    4.58
  • 5-year impact
    0.00
  • Cited half-life
    2.30
  • Immediacy index
    0.68
  • Eigenfactor
    0.00
  • Article influence
    1.85
  • Website
    Epigenetics website
  • Other titles
    Epigenetics (Online), Epigenetics
  • ISSN
    1559-2308
  • OCLC
    62511506
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • Nicholas Light, Véronique Adoue, Bing Ge, Shu-Huang Chen, Tony Kwan, Tomi Pastinen
    [Show abstract] [Hide abstract]
    ABSTRACT: Allele-specific (AS) assessment of chromatin has the potential to elucidate specific cis-regulatory mechanisms, which are predicted to underlie the majority of the known genetic associations to complex disease. However, development of chromatin landscapes at allelic resolution has been challenging since sites of variable signal strength require substantial read depths not commonly applied in sequencing based approaches. In this study, we addressed this by performing parallel analyses of input DNA and chromatin immunoprecipitates (ChIP) on high-density Illumina genotyping arrays. Allele-specificity for the histone modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3 was assessed using ChIP samples generated from 14 lymphoblast and 6 fibroblast cell lines. AS-ChIP SNPs were combined into domains and validated using high-confidence ChIP-seq sites. We observed characteristic patterns of allelic-imbalance for each histone-modification around allele-specifically expressed transcripts. Notably, we found H3K4me1 to be significantly anti-correlated with allelic expression (AE) at transcription start sites, indicating H3K4me1 allelic imbalance as a marker of AE. We also found that allelic chromatin domains exhibit population and cell-type specificity as well as heritability within trios. Finally, we observed that a subset of allelic chromatin domains is regulated by DNase I-sensitive quantitative trait loci and that these domains are significantly enriched for genome-wide association studies hits, with autoimmune disease associated SNPs specifically enriched in lymphoblasts. This study provides the first genome-wide maps of allelic-imbalance for five histone marks. Our results provide new insights into the role of chromatin in cis-regulation and highlight the need for high-depth sequencing in ChIP-seq studies along with the need to improve allele-specificity of ChIP-enrichment.
    Epigenetics: official journal of the DNA Methylation Society 07/2014; 9(9).
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P<0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872 hypermethylated regions. Importantly, pathway analysis revealed 1693 genes associated with the identified DMRs were highly associated in diverse neurological disorders and NAD+/NADH metabolism pathways is implicated in the pathogenesis. Our results provide novel insights into the epigenetic mechanism of neurodegeneration arising from a hotspot DNMT1 mutation and reveal pathways potentially important in a broad category of neurological and psychological disorders.
    Epigenetics: official journal of the DNA Methylation Society 07/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel diseases (IBD) are emerging globally, indicating that environmental factors may be important in their pathogenesis. Colonic mucosal epigenetic changes, such as DNA methylation, can occur in response to the environment and have been implicated in IBD pathology. However, mucosal DNA methylation has not been examined in treatment-naïve patients. We studied DNA methylation in untreated, left sided colonic biopsy specimens using the Infinium HumanMethylation450 BeadChip array. We analyzed 22 control (C) patients, 15 untreated Crohn's disease (CD) patients, and 9 untreated ulcerative colitis (UC) patients from two cohorts. Samples obtained at the time of clinical remission from two of the treatment-naïve UC patients were also included into the analysis. UC-specific gene expression was interrogated in a subset of adjacent samples (5 C and 5 UC) using the Affymetrix GeneChip PrimeView Human Gene Expression Arrays. Only treatment-naïve UC separated from control. One-hundred-and-twenty genes with significant expression change in UC (> 2-fold, P<0.05) were associated with differentially methylated regions (DMRs). Epigenetically associated gene expression changes (including gene expression changes in the IFITM1, ITGB2, S100A9, SLPI, SAA1, and STAT3 genes) were linked to colonic mucosal immune and defense responses. These findings underscore the relationship between epigenetic changes and inflammation in pediatric treatment-naïve UC and may have potential etiologic, diagnostic, and therapeutic relevance for IBD.
    Epigenetics: official journal of the DNA Methylation Society 06/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSG DNA can serve as useful biomarkers for early cancer detection. We have now developed a "Multiplex Methylation Specific PCR" (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from 3 NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, 6 marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any 2 methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence.
    Epigenetics: official journal of the DNA Methylation Society 06/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic mechanisms are proposed to link maternal concentrations of methyl group donor nutrients with the risk of low birth weight. However, empirical data are lacking. We have examined the association between folate and birth weight and assessed the mediating role of DNA methylation at nine differentially methylated regions (DMRs) of genomically imprinted genes in these associations. Compared with newborns of women with folate levels in the lowest quartile, birth weight was higher in those newborns of mothers in the second (β = 143.2, se = 63.2, P = 0.02), third (β = 117.3, se = 64.0, P = 0.07), and fourth quartile (β = 133.9, se = 65.2, P = 0.04), consistent with a threshold effect. This pattern of association did not vary by race/ethnicity but was more apparent in newborns of non-obese women. DNA methylation at the PLAGL1, SGCE, DLK1/MEG3 and IGF2/H19 DMRs was associated with maternal folate levels and also birth weight, suggestive of threshold effects. A role for methylation in the mediation of the association between maternal folate levels and birth weight was significant only for the MEG3 DMR (P<0.05). While the small sample size and partial scope of examined DMRs limit our conclusions, our data suggest that, with respect to birth weight, no additional benefits may be derived from increased maternal folate concentrations, especially in non-obese women. These data also support epigenetic plasticity as a key mechanistic response to folate availability during early fetal development.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extent and role of aberrant DNA methylation in promoter CpG islands (CGIs) have been extensively studied in leukemia and other malignancies. Still, CGIs represent only a small fraction of the methylome. We aimed to characterize genome-wide differential methylation of cytogenetically normal AML (CN-AML) cells compared with normal CD34(+) bone marrow cells using the Illumina(®) 450K methylation array. Differential methylation in CN-AML was most prominent in genomic areas far from CGIs, in so called open sea regions. Furthermore, differential methylation was specifically found in genes encoding transcription factors (TFs), with WT1 being the most differentially methylated TF. Among genetic mutations in AML, DNMT3A mutations showed the most prominent association with the DNA methylation pattern, characterized by hypomethylation of CGIs (as compared with DNMT3A wild type cases). The differential methylation in DNMT3A mutant cells vs. wild type cells was predominantly found in HOX genes, which were hypomethylated. These results were confirmed and validated in an independent CN-AML cohort. In conclusion, we show that, in CN-AML, the most pronounced changes in DNA methylation occur in non-CGI regions and that DNMT3A mutations confer a pattern of global hypomethylation that specifically targets HOX genes.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many genetic studies report mixed results both for the associations between COMT polymorphisms and schizophrenia and for the effects of COMT variants on common intermediate phenotypes of the disorder. Reasons for this may include small genetic effect sizes and the modulation of environmental influences. To improve our understanding of the role of COMT in the disease etiology, we investigated the effect of DNA methylation in the MB-COMT promoter on neural activity in the dorsolateral prefrontal cortex during working memory processing as measured by fMRI-an intermediate phenotype for schizophrenia. Imaging and epigenetic data was measured in 102 healthy controls and 82 schizophrenia patients of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia. Neural activity during the Sternberg Item Recognition Paradigm was acquired with either a 3T Siemens Trio or 1.5T Siemens Sonata and analyzed using the FMRIB Software Library (FSL). DNA methylation measurements were derived from cryo-conserved blood samples. We found a positive association between MB-COMT promoter methylation and neural activity in the left dorsolateral prefrontal cortex in a model using a region-of-interest approach and could confirm this finding in a whole-brain model. This effect was independent of disease status. Analyzing the effect of MB-COMT promoter DNA methylation on a neuroimaging phenotype can provide further evidence for the importance of COMT and epigenetic risk mechanisms in schizophrenia. The latter may represent trans-regulatory or environmental risk factors that can be measured using brain-based intermediate phenotypes.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In mouse models, loss of the candidate tumor suppressor gene Ubiquitin Specific Protease 44 (USP44) is associated with aneuploidy and cancer. USP44 is also transcriptionally silenced in human cancers. Here we investigated the molecular mechanism of USP44 silencing and whether this correlated with aneuploidy in colorectal adenomas. DNA methylation at the USP44 CpG island (CGI) promoter was measured using combined bisulfite restriction analysis (COBRA) in colorectal cancer (CRC) cell lines (n = 18), and with COBRA and bisulfite sequencing in colorectal adenomas (n = 89) and matched normal colonic mucosa (n = 51). The USP44 CGI was hypermethylated in all CRC cell lines, in most colorectal adenomas (79 of 89, 89%) but rarely in normal mucosa samples (3 of 51, 6%). USP44 expression was also compared between normal mucosa and paired hypermethylated adenomas in six patients using qRT-PCR. Hypermethylation of the USP44 CGI in adenomas was associated with a 1.8 to 5.5-fold reduction in expression compared with paired normal mucosa. Treatment of CRC cell lines with the DNA hypomethylating agent decitabine resulted in a 14 to 270-fold increase in USP44 expression. Whole genome SNP array data showed that gain or loss of individual chromosomes occurred in adenomas, but hypermethylation did not correlate with more aneuploidy. In summary, our data shows that USP44 is epigenetically inactivated in colorectal adenomas, but this alone is not sufficient to cause aneuploidy in colorectal neoplasia.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide, more than 1 in 10 infants is born prior to 37 weeks gestation. Preterm birth can lead to increased mortality risk and poor life-long health and neurodevelopmental outcomes. Whether environmental risk factors affect preterm birth through epigenetic phenomena is largely unstudied. We sought to determine whether preterm risk factors, such as smoke exposure and education, were associated with cervical DNA methylation in the prostaglandin E receptor 2 gene (PTGER2) and a repetitive element, long interspersed nuclear element-1 Homo sapiens-specific (LINE 1-HS). Second, we aimed to determine whether mid-pregnancy DNA methylation of these regions in cervical samples could predict the length of gestation. We obtained a cervical swab between 16-19 weeks gestation from 80 women participating in a Mexico City birth cohort, used pyrosequencing to analyze DNA methylation of PTGER2 and LINE 1-HS, and examined associations with maternal covariates. We used accelerated failure time models to analyze associations of DNA methylation with the length of gestation. DNA methylation of both sequences was associated with Pap smear inflammation. LINE 1-HS methylation was associated with smoke exposure, BMI and parity. In adjusted models, gestations were 3.3 days longer (95%CI 0.6, 6.0) for each interquartile range of PTGER2 DNA methylation. Higher LINE 1-HS methylation was associated with shorter gestations (-3.3 days, 95%CI -6.5, -0.2). In conclusion, cervical DNA methylation was associated with risk factors for preterm birth and the length of gestation.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies indicate that a subgroup of suicide completers has low cortical brain expression levels of TrkB-T1, a TrkB gene transcript that is highly expressed in astrocytes. Epigenetic modifications, including methylation changes in the TrkB promoter, partially explain TrkB-T1 low expression levels in brain tissue from suicide completers. The aim of this study was to investigate whether methylation changes in other regions of the TrkB gene could also contribute to the significant downregulation of the TrkB-T1 transcript observed in the brain of suicide completers. Methylation levels were assessed on BA8/9 from suicide completers expressing low TrkB-T1 transcript levels and controls, using custom-made Agilent arrays tiling the whole TrkB gene. After statistical correction for multiple testing, five probes located in the TrkB-T1 3'UTR region were found hypermethylated in the frontal cortex of suicide completers. These results were validated for four CpGs spanning a 150 bp sequence by cloning and Sanger sequencing bisulfite treated DNA. We found a significant correlation between the methylation level at these four CpGs and TrkB-T1 expression in BA8/9. Site-specific hypermethylation on this 3'UTR sequence induced decreased luciferase activity in reporter gene cell assays. Site-specific differential methylation in the TrkB-T1 3'UTR region associates with functional changes in TrkB-T1 expression and may play a significant role in the important decrease of cortical TrkB-T1 expression observed among suicide completers.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CAHM gene (Colorectal Adenocarcinoma HyperMethylated), previously LOC100526820, is located on chromosome 6, hg19 chr6:163 834 097-163 834 982. It lacks introns, encodes a long non-coding RNA (lncRNA) and is located adjacent to the gene QKI, which encodes an RNA binding protein. Deep bisulphite sequencing of ten colorectal cancer (CRC) and matched normal tissues demonstrated frequent hypermethylation within the CAHM gene in cancer. A quantitative methylation-specific PCR (qMSP) was used to characterize additional tissue samples. With a threshold of 5% methylation, the CAHM assay was positive in 2/26 normal colorectal tissues (8%), 17/21 adenomas (81%), and 56/79 CRC samples (71%). A reverse transcriptase-qPCR assay showed that CAHM RNA levels correlated negatively with CAHM % methylation, and therefore CAHM gene expression is typically decreased in CRC. The CAHM qMSP assay was applied to DNA isolated from plasma specimens from 220 colonoscopy-examined patients. Using a threshold of 3 pg methylated genomic DNA per mL plasma, methylated CAHM sequences were detected in the plasma DNA of 40/73 (55%) of CRC patients compared with 3/73 (4%) from subjects with adenomas and 5/74 (7%) from subjects without neoplasia. Both the frequency of detection and the amount of methylated CAHM DNA released into plasma increased with increasing cancer stage. Methylated CAHM DNA shows promise as a plasma biomarker for use in screening for CRC.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Altered expression of microRNA (miRNA) can significantly contribute to cancer development and recent studies have shown that a number of miRNAs may be regulated by DNA methylation. Through a candidate gene approach, we identified MIR941 and MIR1247 to be transcriptionally silenced by DNA hypermethylation in several gastric cancer cell lines. We confirmed that these miRNAs are also densely methylated in primary gastric cancers but not in normal gastric tissues. In addition, we demonstrated that ectopic expression of these two miRNAs in AGS gastric cancer cells resulted in suppression of growth and migration. Furthermore, we tested genes predicted to be the targets of MIR941 and MIR1247 and identified 7 and 6 genes, whose expressions were significantly downregulated by transfection of MIR941 and MIR1247 mimics, respectively, in gastric cancer cell lines. Some of these genes are known to promote proliferation and invasion, phenotypes we observed upon ectopic expression of the two miRNAs. Thus, we examined these candidates more closely and found that downregulation of mRNA corresponded to a decrease in protein levels (observed by western blot). Our study provides unequivocal evidence that MIR941 and MIR1247 are transcriptionally regulated by DNA methylation in gastric cancer and that they have tumor suppressor properties through their inhibition of key cancer promoting genes in this context.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: An understanding of the natural change in DNA methylation over time, defined as "epigenetic drift," will inform the study of environmental effects on the epigenome. This study investigates epigenetic drift in isogenic mice exposed perinatally to lead (Pb) acetate at four concentrations, 0 ppm (control), 2.1 ppm (low), 16 ppm (medium), and 32 ppm (high) prior to conception through weaning, then followed until 10 months of age. Absolute values of DNA methylation in a transposon-associated metastable locus, Cdk5-activator binding protein (Cabp(IAP)), and three imprinted loci (Igf2, Igf2r, and H19) were obtained from tail tissue in paired samples. DNA methylation levels in the controls increased over time at the imprinted Igf2 and Igf2r loci (both P = 0.0001), but not at the imprinted H19 locus or the Cabp(IAP) metastable epiallele. Pb exposure was associated with accelerated DNA hypermethylation in Cabp(IAP) (P = 0.0209) and moderated hypermethylation in Igf2r (P = 0.0447), and with marginally accelerated hypermethylation at H19 (P = 0.0847). In summary, the presence and magnitude of epigenetic drift was locus-dependent, and enhancement of drift was mediated by perinatal Pb exposure, in some, but not all, loci.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter hypermethylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing (MBD-seq), 450K Methylation arrays, whole exome sequencing, and whole genome gene expression arrays in primary head and neck squamous cell carcinoma (HNSCC) tumors and matched uvulopalatopharyngoplasty tissue samples (UPPPs). We uncovered 186 downregulated genes harboring cancer specific promoter methylation including PAX1 and PAX5 and we identified 10 key tumor suppressor genes (GABRB3, HOXC12, PARP15, SLCO4C1, CDKN2A, PAX1, PIK3AP1, HOXC6, PLCB1, and ZIC4) inactivated by both promoter methylation and/or somatic mutation. Among the novel tumor suppressor genes discovered with dual mechanisms of inactivation, we found a high frequency of genomic and epigenomic alterations in the PAX gene family of transcription factors, which selectively impact canonical NOTCH and TP53 pathways to determine cell fate, cell survival, and genome maintenance. Our results highlight the importance of assessing TSGs at the genomic and epigenomic level to identify key pathways in HNSCC, deregulated by simultaneous promoter methylation and somatic mutations.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Though the mechanisms governing nuclear organization are not well understood, it is apparent that epigenetic modifications coordinately modulate chromatin organization as well as transcription. In maize, MEDIATOR OF PARAMUTATION1 (MOP1) is required for 24 nt siRNA-mediated epigenetic regulation and transcriptional gene silencing via a putative Pol IV- RdDM pathway. To elucidate the mechanisms of nuclear chromatin organization, we investigated the relationship between chromatin structure and transcription in response to loss of MOP1 function. We used a microarray based micrococcal nuclease sensitivity assay to identify genome-wide changes in chromatin structure in mop1-1 immature ears and observed an increase in chromatin accessibility at chromosome arms associated with loss of MOP1 function. Within the many genes misregulated in mop1 mutants, we identified one subset likely to be direct targets of epigenetic transcriptional silencing via Pol-IV RdDM. We found that target specificity for MOP1-mediated RdDM activity is governed by multiple signals that include accumulation of 24 nt siRNAs and the presence of specific classes of gene-proximal transposons, but neither of these attributes alone is sufficient to predict transcriptional misregulation in mop1-1 homozygous mutants. Our results suggest a role for MOP1 in regulation of higher-order chromatin organization where loss of MOP1 activity at a subset of loci triggers a broader cascade of transcriptional consequences and genome-wide changes in chromatin structure.
    Epigenetics: official journal of the DNA Methylation Society 05/2014; 9(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The genetic mechanisms that regulate CFTR, the gene responsible for cystic fibrosis, have been widely investigated in cultured cells. However, mechanisms responsible for tissue-specific and time-specific expression are not completely elucidated in vivo. Through the survey of public databases, we found that the promoter of CFTR was associated with bivalent chromatin in human embryonic stem (ES) cells. In this work, we analyzed fetal (at different stages of pregnancy) and adult tissues and showed that, in digestive and lung tissues, which expressed CFTR, H3K4me3 was maintained in the promoter. Histone acetylation was high in the promoter and in two intronic enhancers, especially in fetal tissues. In contrast, in blood cells, which did not express CFTR, the bivalent chromatin was resolved (the promoter was labeled by the silencing mark H3K27me3). Cis-regulatory sequences were associated with lowly acetylated histones. We also provide evidence that the tissue-specific expression of CFTR is not regulated by dynamic changes of DNA methylation in the promoter. Overall, this work shows that a balance between activating and repressive histone modifications in the promoter and intronic enhancers results in the fine regulation of CFTR expression during development, thereby ensuring tissue specificity.
    Epigenetics: official journal of the DNA Methylation Society 04/2014; 9(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2-3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2-3, and CXCL14 expression was reduced in metastases vs. primary tumors (P<0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.
    Epigenetics: official journal of the DNA Methylation Society 04/2014; 9(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Arabidopsis, variant in methylation (VIM) proteins are required for the maintenance of DNA methylation in the CpG dinucleotide context. VIM1 acts as a cofactor of DNA methyltransferase 1 (MET1), although the mechanism for this co-regulation remains unclear. In this study, we used RNA-seq analysis to profile the transcriptomes of vim1, vim1 vim2 vim3, and met1 null mutants. Consistent with previous studies indicating functional redundancy between these VIM proteins, we found no transcripts that were significantly misregulated in vim1 mutants. However, we identified a large set of VIM protein regulatory targets through analysis of vim1 vim2 vim3 mutants, and we observed that this set is essentially identical to that regulated by MET1. Log 2 fold changes in gene expression relative to wild type are strongly correlated between vim1 vim2 vim3 and met1 mutants. While the largest subset of these transcripts is upregulated and enriched in transposable elements, we also found small subsets of downregulated genes in each mutant, which are enriched in protein-coding genes. Together, these results expand on previous studies that profiled cytosine methylation in the vim1 vim2 vim3 mutant, and show that VIM proteins function in transcriptional regulation via their roles in the MET1 DNA methylation pathway.
    Epigenetics: official journal of the DNA Methylation Society 04/2014; 9(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6-15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources.
    Epigenetics: official journal of the DNA Methylation Society 04/2014; 9(7).

Related Journals