Molecular Neurobiology (MOL NEUROBIOL)

Publisher: Humana Press, Humana Press

Journal description

As one of the premier review journals in the neurosciences, Molecular Neurobiology is specifically designed to synthesize and critically assess research trends in experimental and clinical neuroscience at the molecular level. Its distinguished editorial board is comprised of four Nobelists and other preeminent neuroscientists who carefully review papers to ensure their high quality.

Current impact factor: 5.29

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 5.286
2012 Impact Factor 5.471
2011 Impact Factor 5.735
2010 Impact Factor 6.068
2009 Impact Factor 4.735
2008 Impact Factor 3.025

Impact factor over time

Impact factor
Year

Additional details

5-year impact 5.54
Cited half-life 5.70
Immediacy index 0.78
Eigenfactor 0.01
Article influence 1.80
Website Molecular Neurobiology website
Other titles Molecular neurobiology
ISSN 1559-1182
OCLC 15640289
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Humana Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's personal website immediately
    • On any open access repository after 12 months from publication
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version: The original publication is available at www.springerlink.com
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'Humana Press' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).
    Molecular Neurobiology 03/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).
    Molecular Neurobiology 03/2015; DOI:10.1007/s12035-015-9129-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epilepsy is a common neurological disease characterized by recurrent unprovoked seizures. Evidence suggested that abnormal activity of brain-derived neurotrophic factor (BDNF) contributes to the pathogenesis of epilepsy. Some previous studies identified association between genetic variants of BDNF and risk of epilepsy. In this study, this association has been examined in the Hong Kong and Malaysian epilepsy cohorts. Genomic DNA of 6047 subjects (1640 patients with epilepsy and 4407 healthy individuals) was genotyped for rs6265, rs11030104, rs7103411 and rs7127507 polymorphisms by using Sequenom MassArray and Illumina HumanHap 610-Quad or 550-Duo BeadChip arrays techniques. Results showed significant association between rs6265 T, rs7103411 C, and rs7127507 T and cryptgenic epilepsy risk (p = 0.00003, p = 0.0002, and p = 0.002, respectively) or between rs6265 and rs7103411 and symptomatic epilepsy risk in Malaysian Indians (TT vs. CC, p = 0.004 and T vs. C, p = 0.0002, respectively) as well as between rs6265 T and risk of cryptogenic epilepsy in Malaysian Chinese (p = 0.005). The Trs6265-Crs7103411-Trs7127507 was significantly associated with cryptogenic epilepsy in Malaysian Indians (p = 0.00005). In concusion, our results suggest that BDNF polymorphisms might contribute to the risk of epilepsy in Malaysian Indians and Chinese.
    Molecular Neurobiology 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix (ECM) of the central nervous system (CNS) occupies a large part of the neural tissue. It serves a variety of functions ranging from support of cell migration and regulating synaptic transmission and plasticity to the active modulation of the neural tissue after injury. In addition, evidence for neuroprotective properties of ECM components has accumulated more recently. In contrast to other connective tissues, the central nervous ECM is mainly composed of glycosaminoglycans, which can be present unbound in the form of hyaluronan or bound to proteins, thus forming proteoglycans. A subtype of this molecular family are the chondroitin sulphate proteoglycans (CSPGs), which are composed of a core protein that carries at least one covalently bound glycosaminoglycan side chain with a certain degree of sulphation. Several studies could show neuroprotective features of CSPGs against excitotoxicity, amyloid-ß toxicity, or oxidative stress. Recently, we could provide evidence for a neuroprotective function of a specialized form of ECM, the so-called perineuronal net ensheathing a subtype of neurons. Here, we will give an overview on recently emerging aspects of neuroprotective properties of CSPGs and perineuronal nets that might be relevant for our understanding on the distribution and progression of brain pathology and future perspectives toward modifying neurodegenerative diseases.
    Molecular Neurobiology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasminogen activator inhibitor-1 (PAI-1) is an endogenous inhibitor of tissue plasminogen activator (tPA) that acts as a neuromodulator in various neurophysiological and pathological conditions. Several researchers including us reported the induction of PAI-1 during inflammatory condition; however, the mechanism regulating PAI-1 induction is not yet clear. In this study, we investigated the role of non-receptor tyrosine kinase Fyn in the regulation of lipopolysaccharide (LPS)-induced upregulation of PAI-1 in rat primary astrocyte. The activation of toll-like receptor 4 (TLR4) signaling, induced by its ligand LPS, stimulated a physical interaction between TLR4 and Fyn along with phosphorylation of tyrosine residue in both molecules as determined by co-immunoprecipitation experiments. Immunofluorescence staining also showed increased co-localization of TLR4-Fyn on cultured rat primary astrocytes after LPS treatment. The increased TRLR4-Fyn interaction induced expression of PAI-1 through the activation of PI3k/Akt/NFĸB pathway. Treatment with Src kinase inhibitor (PP2) or transfection of Fyn small interfering RNA (siRNA) into cultured rat primary astrocytes inhibited phosphorylation of tyrosine residue of TLR4 and blocked the interaction between TLR4 and Fyn resulting to the inhibition of LPS-induced expression of PAI-1. The activation of PI3K/Akt/NFĸB signaling cascades was also inhibited by Fyn knockdown in rat primary astrocytes. The induction of PAI-1 in rat primary astrocytes, which resulted in downregulation of tPA activity in culture supernatants, inhibited neurite outgrowth in cultured rat primary cortical neuron. The inhibition of neurite extension was prevented by PP2 or Fyn siRNA treatment in rat primary astrocytes. These results suggest the critical physiological role of TRL4-Fyn interaction in the modulation of PAI-1-tPA axis in astrocytes during neuroinflammatory responses such as ischemia/reperfusion injuries.
    Molecular Neurobiology 08/2014; DOI:10.1007/s12035-014-8837-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small molecule histone deacetylase inhibitors (HDIs) hold much promise as pharmacological modifiers of the epigenetic status of the central nervous system (CNS), given their ability to cross the blood-brain barrier. This is particularly relevant given the lack of disease-modifying therapies for many neurodegenerative diseases and that epigenetic perturbations are increasingly recognised as playing a key role in their pathophysiology. In particular, emerging evidence in recent years has shown that epigenetic dysregulation may contribute to dopaminergic neuronal death in Parkinson's disease. As a result, a number of pan-HDIs have been explored as potential neuroprotective agents for dopaminergic neurons. However, it is not known if the neuroprotective effects of pan-histone deacetylase (HDAC) inhibition are a general phenomenon or if these effects require inhibition of specific classes of HDACs. Here, we examine the ability of class-specific HDIs to promote neurite growth in a variety of cellular contexts. We find that MC1568, a class IIa-specific HDI, promotes neurite growth and arbourisation and protects neurite arbours against neurotoxic insult. Furthermore, we show that class IIa-specific HDAC inhibition results in activation of the canonical Smad signalling pathway, which is known to promote the survival and growth of midbrain dopaminergic neurons. These results demonstrate the potential of class IIa-specific HDIs as regulators of neuronal structure and suggest they should be examined in animal models of Parkinson's disease as the next stage in rationalising their use as a potential therapy for this disorder.
    Molecular Neurobiology 07/2014; DOI:10.1007/s12035-014-8820-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is pathologically characterized by selective loss of dopaminergic neurons in the midbrain and the existence of intracellular protein inclusions termed Lewy bodies, largely composed of α-synuclein. Genetic studies have revealed that rare point mutations in the gene encoding α-synuclein including A30P, A53T, and E46K are associated with familial forms of PD, indicating a pathological role for mutant α-synuclein in PD etiology. However, the mechanisms underlying the neuronal toxicity of mutant α-synuclein are still to be elucidated. Growing evidence has suggested a deleterious effect of mutant α-synuclein on the autophagy-lysosome pathway. In this study, we discovered that overexpression of human E46K mutant α-synuclein impaired macroautophagy in mammalian cells. Our data showed that overexpression of E46K mutant α-synuclein impaired autophagy at an early stage of autophagosome formation via the c-Jun N-terminal kinase 1 (JNK1)-Bcl-2 but not the mammalian target of rapamycin (mTOR) pathway. Overexpressed E46K mutant α-synuclein inhibited JNK1 activation, leading to a reduced Bcl-2 phosphorylation and increased association between Bcl-2 and Beclin1, further disrupting the formation of Beclin1/hVps34 complex, which is essential for autophagy initiation. Furthermore, overexpression of E46K mutant α-synuclein increased the vulnerability of differentiated PC12 cells to rotenone treatment, which would be partly due to its inhibitory effects on autophagy. Our findings may shed light on the potential roles of mutant α-synuclein in the pathogenesis of PD.
    Molecular Neurobiology 05/2014; DOI:10.1007/s12035-014-8738-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Information generated from animal models, genome sequencing, and high-throughput technologies provide valuable sequence of events to understand the Parkinson's disease (PD) pathogenesis. A dynamic equilibrium between biosynthesis and biodegradation of sub-cellular components by ubiquitin proteasome system and autophagy is found to be responsible for sustaining the homeostasis of tyrosine hydroxylase-positive neurons. Autophagy degrades and eliminates α-synuclein, Parkin, ubiquitin, etc., proteins along with damaged cellular components to maintain the homeostasis of the nigrostriatal dopaminergic neurons. Aberrant type II apoptosis is widely implicated in dopaminergic neurodegeneration leading to PD. The current article reviews the elementary role of autophagy in the degradation and elimination of superfluous and aggregated proteins and impaired mitochondria. The article also recapitulates the information, which implicated the role of aberrant autophagy in toxin-induced Parkinsonism. Moreover, the review sheds light on whether or not targeting the defective autophagy could reinstate the normal functioning of dopaminergic neurons, which could ultimately rescue from PD pathogenesis.
    Molecular Neurobiology 05/2014; DOI:10.1007/s12035-014-8744-3