Molecular Biotechnology (MOL BIOTECHNOL)

Publisher: Humana Press

Journal description

This practical periodical is devoted to the rapid issuance of essential step-by-step laboratory protocols for molecular biology techniques (both protein and nucleic acid based), review articles, and original papers on the application of these techniques in both basic and applied biotechnology.

Current impact factor: 2.28

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.275
2012 Impact Factor 2.262
2011 Impact Factor 2.171
2010 Impact Factor 2.091
2009 Impact Factor 2.444
2008 Impact Factor 1.669
2007 Impact Factor 1.671
2006 Impact Factor 2.041
2005 Impact Factor 1.859
2004 Impact Factor 1.614
2003 Impact Factor 1.579
2002 Impact Factor 1
2001 Impact Factor 1.259
2000 Impact Factor 0.847
1999 Impact Factor 0.939
1998 Impact Factor 1.017

Impact factor over time

Impact factor

Additional details

5-year impact 2.23
Cited half-life 6.10
Immediacy index 0.66
Eigenfactor 0.01
Article influence 0.64
Website Molecular Biotechnology website
Other titles Molecular biotechnology
ISSN 1559-0305
OCLC 29487200
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Humana Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's personal website immediately
    • On any open access repository after 12 months from publication
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version: The original publication is available at
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'Humana Press' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3'-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.
    Molecular Biotechnology 05/2015; DOI:10.1007/s12033-015-9870-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: HERV-W is a multi-locus family of human endogenous retroviruses (HERVs) that has been found to play an important role in human physiology and pathology. Two particular members of HERV-W family are of special interests: ERVWE1 (coding syncytin-1, which is a glycoprotein essential in the formation of the placenta) and MSRV (multiple sclerosis-associated retrovirus that is thought to play a significant role in human pathology as a result of its increased expression in the brain tissue and blood cells derived from patients with multiple sclerosis (MS)). Both ERVWE1 and MSRV mRNA share high level of similarity and hence a method that allows to exclusively quantify the MSRV expression in clinical samples would be desirable. We developed a quantitative polymerase chain reaction (QPCR) technique for the detection and quantification of the multiple sclerosis-associated retrovirus. The assay utilises fluorescently labelled oligonucleotide probe, which is complementary to the conservative fragment of MSRV env gene and a peptide nucleic acid (PNA) probe, fully complementary to the ERVWE1 sequence fragment that efficiently blocks the polymerase action on ERVWE1 templates. The PNA molecule, if used parallel with hydrolysis probe in QPCR analysis, greatly facilitates the detection efficiency of MSRV even if ERVWE1 is present abundantly in respect to MSRV in the analysed sample. We achieved a wide and measurable range from 1 × 10 e(2) to 1 × 10 e(8) copies/reaction; the linearity of the technique was maintained even at the low MSRV level of 1 % in respect to ERVWE1. Using our newly developed method we confirmed that the expression of MSRV takes place in normal human astrocytes and in human umbilical vein endothelial cells in vitro. We also found that the stimulation of human monocytes did not influence the specific expression of MSRV but it caused changes in mRNA level of distinct HERV-W templates.
    Molecular Biotechnology 05/2015; DOI:10.1007/s12033-015-9873-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flagellin, the main component of flagellar filaments, is a protein possessing polymerization ability. In this work, a novel fusion construct of xylanase A from B. subtilis and Salmonella flagellin was created which is applicable to build xylan-degrading catalytic nanorods of high stability. The FliC-XynA chimera when overexpressed in a flagellin deficient Salmonella host strain was secreted into the culture medium by the flagellum-specific export machinery allowing easy purification. Filamentous assemblies displaying high surface density of catalytic sites were produced by ammonium sulfate-induced polymerization. FliC-XynA nanorods were resistant to proteolytic degradation and preserved their enzymatic activity for a long period of time. Furnishing enzymes with self-assembling ability to build catalytic nanorods offers a promising alternative approach to enzyme immobilization onto nanostructured synthetic scaffolds.
    Molecular Biotechnology 05/2015; DOI:10.1007/s12033-015-9874-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two genes encoding lipolytic enzymes were isolated from a metagenomic library constructed from oil-polluted mud flats. An esterase gene, est3K, encoded a protein of 299 amino acids (ca. 32,364 Da). Est3K was a family IV esterase with typical motifs, HGGG, and HGF. Although est3K showed high identity to many genes with no information on their enzymatic properties, Est3K showed the highest identity (36 %) to SBLip5.1 from forest soil metagenome when compared to the enzymes with reported properties. A lipase gene, lip3K, encoded a protein of 616 amino acids (ca. 64,408 Da). Lip3K belonged to family I.3 lipase with a C-terminal secretion signal and showed the highest identity (93 %) to the lipase of Pseudomonas sp. MIS38. The presence of several newly identified conserved motifs in Est3K and Lip3K are suggested. Both Est3K and Lip3K exerted their maximal activity at pH 9.0 and 50 °C. The activity of Lip3K was significantly increased by the presence of 30 % methanol. The ability of the enzymes to retain activities in the presence of methanol and the substrates may offer a merit to the biotechnological applications of the enzymes such as transesterification. The activity and the thermostability of Lip3K were increased by Ca(2+). Est3K and Lip3K preferred p-nitrophenyl butyrate (C4) and octanoate (C8), respectively, as the substrate and acted independently on the substrates with no synergistic effect.
    Molecular Biotechnology 05/2015; DOI:10.1007/s12033-015-9871-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was undertaken to clone and express the genes encoding antibody to the recombinant coat protein (rCP) of Papaya ringspot virus (PRSV) and to assess the engineered antibody for the detection of PRSV. A 33-kDa rCP of PRSV, which was produced in Escherichia coli, generated PRSV specific antibody in immunized mouse. The heavy and light chain variable domain genes (VH and VL) of 351 and 360 nucleotides, respectively, were cloned from the mRNA isolated from the spleen of the immunized mouse with rCP of PRSV. The VH and VL belong to the family IgG1 and kappa chain, respectively, and contained the framework regions and complementarity determining regions. The VH and VL genes were individually used to develop the expression constructs in pET28a (+) vector and 14-kDa proteins were obtained in E. coli. The amount of purified VH and VL proteins was 3-4 mg/l of bacterial culture. Both the antibody fragments recognized PRSV in the crude sap; however, the VL antibody fragment showed higher affinity to PRSV. The mixture of VH and VL detected PRSV as effectively as polyclonal antibody. The recombinant antibody fragments mixture detected PRSV in the field samples with 100 % accuracy in dot immunobinding assay (DIBA) and enzyme-linked immunosorbent assay (ELISA). The sensitivity of the detection of PRSV using antibody fragments was 1.0 and 10.0 ng in DIBA and ELISA, respectively. The results showed successful isolation of functional single-domain antibody encoding genes to PRSV directly from the immunized spleen cells of mouse. This study for the first time demonstrates application of bacterial expressed recombinant antibody fragments in immunodiagnosis of PRSV.
    Molecular Biotechnology 04/2015; DOI:10.1007/s12033-015-9854-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein A from Staphylococcus aureus (SpA) is a 40–60 kDa cell-wall component, composed of five homologous immunoglobulin (Ig)-binding domains folded into a three-helix bundle. Each of these five domains is able to bind Igs from many different mammalian species. Recombinant SpA is widely used as a component of diagnostic kits for the detection and purification of IgGs from serum or other biological fluids. In this study, purified SpA was adsorbed and covalently linked to Bacillus subtilis spores. Spores are extremely stable cell forms and are considered as an attractive platform to display heterologous proteins. A sample containing about 36 lg of SpA was covalently immobilized on the surface of 4 9 1010 spores. Spore-bound SpA retained its IgG-binding activity, even after seven consecutive binding and washing steps, suggesting that it can be recycled and utilized several times. FACS analysis revealed that spores with covalently attached SpA had significantly improved fluorescence intensities when compared to those of spores with adsorbed SpA, suggesting that the covalent approach is more efficient than sole adsorption regarding protein attachment to the spore surface.
    Molecular Biotechnology 04/2015; DOI:10.1007/s12033-015-9868-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: We used a combination of protein engineering and spectroscopic methods to investigate the effect of a long length loop on the conformational stability and activity of chondroitinase ABC I. This study involves manipulation of interactions around Asp(689) as a key residue in the central region of the loop containing residues 681-695 located at C-terminal domain of the enzyme. According to the equilibrium unfolding experiments and considering thermodynamic m value and ΔG(H2O), we found that the folded state of H700N, L701T, and H700N/L701T are more compact relative to the folded state of wild-type protein and they become stabilized upon mutation. However, the compactness and stability of other variants are less than those of wild-type protein. According to enzyme activity measurements, we found that the catalytic efficiency of structurally stabilized variants is decreased, while that of destabilized mutants is improved.
    Molecular Biotechnology 03/2015; DOI:10.1007/s12033-015-9864-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: The porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus of the Arteriviridae family. As the current commercial vaccines are incompletely protective effective against PRRSV infection, we developed a vaccine strategy using replicating but non-disseminating adenovectors (rAdVs) expressing the PRRSV M matrix protein in fusion with the neutralizing major epitope-carrying GP5 envelope protein (Roques et al. in Vet Res 44:17, 2013). Although production of GP5-specific antibodies (Abs) was observed, no PRRSV-specific neutralizing Abs (NAbs) were induced in pigs given the rAdVs expressing M-GP5 or M-GP5m (GP5m being a mutant form of GP5). Nevertheless, partial protection was observed in the M-GP5m-rAdV-inoculated pigs experimentally infected with PRRSV. Here, we determined the impact of the cholera toxin B subunit (CTB, known for its adjuvant effect) in fusion with the C-terminus of M-GP5m on the Ab response to PRRSV. Three-week-old pigs were immunized twice both intramuscularly and intranasally at 3-week intervals with rAdV-expressing the green fluorescent protein (rAdV-GFP), rAdV-M-GP5m, or rAdV-M-GP5m-CTB. Pigs immunized with rAdV-M-GP5m showed a high level of serum GP5-specific Abs (as determined by an indirect ELISA). In contrast, CTB in fusion with M-GP5m had an unexpected severe negative impact on GP5-specific Ab production. PRRSV-specific NAbs could not be detected in any pigs of all groups.
    Molecular Biotechnology 03/2015; DOI:10.1007/s12033-015-9861-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monellin a sweet-tasting protein exists naturally as a heterodimer of two non-covalently linked subunits chain A and B, which loses its sweetness on denaturation. In this study, we validated the expression of a synthetic monellin gene encoding a single polypeptide chain covalently linking the two subunits under T7 and fruit-ripening-specific promoters in Escherichia coli and tomato fruits, respectively. Purified recombinant monellin protein retained its sweet flavour at 70 °C and pH 2. We developed 15 transgenic T0 tomato plants overexpressing monellin, which were devoid of any growth penalty or phenotypic abnormalities during greenhouse conditions. T-DNA integration and fruit-specific heterologous expression of monellin had occurred in these transgenic tomato lines. ELISA revealed that expression of monellin was 4.5 % of the total soluble fruit protein. Functional analyses of transgenic tomatoes of T2-5 and T2-14 lines revealed distinctly strong sweetness compared with wild type. Monellin a potential non-carbohydrate sweetener, if expressed in high amounts in fruits and vegetables, would enhance their flavour and quality.
    Molecular Biotechnology 02/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-Succinyl-amino acid racemase (NSAAR), long referred to as N-acyl- or N-acetyl-amino acid racemase, is an enolase superfamily member whose biotechnological potential was discovered decades ago, due to its use in the industrial dynamic kinetic resolution methodology first known as "Acylase Process". In previous works, an extended and enhanced substrate spectrum of the NSAAR from Geobacillus kaustophilus CECT4264 toward different N-substituted amino acids was reported. In this work, we describe the cloning, purification, and characterization of the NSAAR from Geobacillus stearothermophilus CECT49 (GstNSAAR). The enzyme has been extensively characterized, showing a higher preference toward N-formyl-amino acids than to N-acetyl-amino acids, thus confirming that the use of the former substrates is more appropriate for a biotechnological application of the enzyme. The enzyme showed an apparent thermal denaturation midpoint of 77.0 ± 0.1 °C and an apparent molecular mass of 184 ± 5 kDa, suggesting a tetrameric species. Optimal parameters for the enzyme activity were pH 8.0 and 55-65 °C, with Co(2+) as the most effective cofactor. Mutagenesis and binding experiments confirmed K166, D191, E216, D241, and K265 as key residues in the activity of GstNSAAR, but not indispensable for substrate binding.
    Molecular Biotechnology 01/2015; 57(5). DOI:10.1007/s12033-015-9839-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.
    Molecular Biotechnology 05/2014; DOI:10.1007/s12033-014-9761-1