Advances in Virus Research Journal Impact Factor & Information

Publisher: Elsevier

Journal description

Current impact factor: 3.59

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 3.585
2012 Impact Factor 2.844
2011 Impact Factor 3.971
2009 Impact Factor 5.522
2008 Impact Factor 4.886
2007 Impact Factor 3.12
2006 Impact Factor 3.48
2005 Impact Factor 4.83
2004 Impact Factor 1.875
2003 Impact Factor 2.576
2002 Impact Factor 2.978
2001 Impact Factor 4.074
2000 Impact Factor 3.474
1999 Impact Factor 7.25
1998 Impact Factor 5.75
1997 Impact Factor 5.24

Impact factor over time

Impact factor
Year

Additional details

5-year impact 3.96
Cited half-life 9.40
Immediacy index 0.59
Eigenfactor 0.00
Article influence 1.46
Website Advances in Virus Research website
Other titles Advances in virus research
ISSN 1557-8399
OCLC 1461272
Material type Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, arXiv.org or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 92:101-99. DOI:10.1016/bs.aivir.2014.11.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 91:33-45. DOI:10.1016/bs.aivir.2014.10.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Citrus is thought to have originated in Southeast Asia and horticulturally desirable clonal selections have been clonally cultivated for hundreds of years. While some citrus species have nucellar embryony, most cultivation of citrus has been by clonal propagation to ensure that propagated plants have the same traits as the parent selection. Clonal propagation also avoids juvenility, and the propagated plants produce fruit sooner. Because of the clonal propagation of citrus, citrus has accumulated a large number of viruses; many of these viruses are asymptomatic until a susceptible rootstock and/or scion is encountered. The viruses reported to occur in citrus will be summarized in this review. Methods of therapy to clean selected clones from viruses will be reviewed; the use of quarantine, clean stock, and certification programs for control of citrus viruses and other strategies to control insect spread citrus viruses, such as mild strain cross-protection and the use of pest management areas will be discussed. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 91:143-73. DOI:10.1016/bs.aivir.2014.10.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 93:161-256. DOI:10.1016/bs.aivir.2015.03.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alphaherpesviruses include human and animal pathogens, such as herpes simplex virus type 1, which establish life-long latent infections with episodes of recurrence. The immunocompetence of the infected host is an important determinant for the outcome of infections with alphaherpesviruses. Recognition of pathogen-associated molecular patterns by pattern recognition receptors is an essential, early step in the innate immune response to pathogens. In recent years, it has been discovered that herpesvirus DNA is a strong inducer of the innate immune system. The viral genome can be recognized in endosomes by TLR9, as well as intracellularly by a variety of DNA sensors, the best documented being cGAS, RNA Pol III, IFI16, and AIM2. These DNA sensors use converging signaling pathways to activate transcription factors, such as IRF3 and NF-κB, which induce the expression of type I interferons and other inflammatory cytokines and activate the inflammasome. This review summarizes the recent literature on the innate sensing of alphaherpesvirus DNA, the mechanisms of activation of the different sensors, their mechanisms of signal transduction, their physiological role in defense against herpesvirus infection, and how alphaherpesviruses seek to evade these responses to allow establishment and maintenance of infection. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 92:63-100. DOI:10.1016/bs.aivir.2014.11.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the course of human immunodeficiency virus type 1 infection, a number of cell types throughout the body are infected, with the majority of cells representing CD4(+) T cells and cells of the monocyte-macrophage lineage. Both types of cells express, to varying levels, the primary receptor molecule, CD4, as well as one or both of the coreceptors, CXCR4 and CCR5. Viral tropism is determined by both the coreceptor utilized for entry and the cell type infected. Although a single virus may have the capacity to infect both a CD4(+) T cell and a cell of the monocyte-macrophage lineage, the mechanisms involved in both the entry of the virus into the cell and the viral egress from the cell during budding and viral release differ depending on the cell type. These host-virus interactions and processes can result in the differential targeting of different cell types by selected viral quasispecies and the overall amount of infectious virus released into the extracellular environment or by direct cell-to-cell spread of viral infectivity. This review covers the major steps of virus entry and egress with emphasis on the parts of the replication process that lead to differences in how the virus enters, replicates, and buds from different cellular compartments, such as CD4(+) T cells and cells of the monocyte-macrophage lineage. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 93:257-311. DOI:10.1016/bs.aivir.2015.04.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipid-containing bacteriophages were discovered late and considered to be rare. After further phage isolations and the establishment of the domain Archaea, several new prokaryotic viruses with lipids were observed. Consequently, the presence of lipids in prokaryotic viruses is reasonably common. The wealth of information about how prokaryotic viruses use their lipids comes from a few well-studied model viruses (PM2, PRD1, and ϕ6). These bacteriophages derive their lipid membranes selectively from the host during the virion assembly process which, in the case of PM2 and PRD1, culminates in the formation of protein capsid with an inner membrane, and for ϕ6 an outer envelope. Several inner membrane-containing viruses have been described for archaea, and their lipid acquisition models are reminiscent to those of PM2 and PRD1. Unselective acquisition of lipids has been observed for bacterial mycoplasmaviruses and archaeal pleolipoviruses, which resemble each other by size, morphology, and life style. In addition to these shared morphotypes of bacterial and archaeal viruses, archaea are infected by viruses with unique morphotypes, such as lemon-shaped, helical, and globular ones. It appears that structurally related viruses may or may not have a lipid component in the virion, suggesting that the significance of viral lipids might be to provide viruses extended means to interact with the host cell. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 92:1-61. DOI:10.1016/bs.aivir.2014.11.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The conventional breeding for virus-tolerant or resistant fruit tree cultivars using available germplasm is a long-term strategy, and the development and production of these cultivars may take decades, if successful. Genetic engineering allows the introduction of specific DNA sequences offering the opportunity to obtain existing fruit tree cultivars improved for the desired resistance trait. Unfortunately, genetic transformation of pome and stone fruits is still limited to few commercial genotypes. Research carried out and the new emerging biotechnological approaches to obtain fruit tree plants resistant or tolerant to viruses are discussed. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 91:47-83. DOI:10.1016/bs.aivir.2014.11.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molluscum contagiosum virus (MCV) is the causative agent of molluscum contagiosum (MC), the third most common viral skin infection in children, and one of the five most prevalent skin diseases worldwide. No FDA-approved treatments, vaccines, or commercially available rapid diagnostics for MCV are available. This review discusses several aspects of this medically important virus including: physical properties of MCV, MCV pathogenesis, MCV replication, and immune responses to MCV infection. Sequencing of the MCV genome revealed novel immune evasion molecules which are highlighted here. Special attention is given to the MCV MC159 and MC160 proteins. These proteins are FLIPs with homologs in gamma herpesviruses and in the cell. They are of great interest because each protein regulates apoptosis, NF-κB, and IRF3. However, the mechanism that each protein uses to impart its effects is different. It is important to elucidate how MCV inhibits immune responses; this knowledge contributes to our understanding of viral pathogenesis and also provides new insights into how the immune system neutralizes virus infections. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 92:201-52. DOI:10.1016/bs.aivir.2014.11.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter. © 2015 Elsevier Inc. All rights reserved.
    Advances in Virus Research 01/2015; 93:47-160. DOI:10.1016/bs.aivir.2015.03.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: As shrimp aquaculture has evolved from a subsistent farming activity to an economically important global industry, viral diseases have also become a serious threat to the sustainable growth and productivity of this industry. Parvoviruses represent an economically important group of viruses that has greatly affected shrimp aquaculture. In the early 1980s, an outbreak of a shrimp parvovirus, infectious hypodermal and hematopoietic necrosis virus (IHHNV), led to the collapse of penaeid shrimp farming in theAmericas. Since then, considerable progress has been made in characterizing the parvoviruses of shrimp and developing diagnostic methods aimed to preventing the spread of diseases caused by these viruses. To date, four parvoviruses are known that infect shrimp; these include IHHNV, hepatopancreatic parvovirus (HPV), spawner-isolated mortality virus (SMV), and lymphoid organ parvo-like virus. Due to the economic repercussions that IHHNV and HPV outbreaks have caused to shrimp farming over the years, studies have been focused mostly on these two pathogens, while information on SMV and LPV remains limited. IHHNV was the first shrimp virus to be sequenced and the first for which highly sensitive diagnostic methods were developed. IHHNV-resistant lines of shrimp were also developed to mitigate the losses caused by this virus. While the losses due to IHHNV have been largely contained in recent years, reports of HPV-induced mortalities in larval stages in hatchery and losses due to reduced growth have increased. This review presents a comprehensive account of the history and current knowledge on the biology, diagnostics methods, genomic features, mechanisms of evolution, and management strategies of shrimp parvoviruses. We also highlighted areas where research efforts should be focused in order to gain further insight on the mechanisms of parvoviral pathogenicity in shrimp that will help to prevent future losses caused by these viruses.
    Advances in Virus Research 01/2014; 89:85-139. DOI:10.1016/B978-0-12-800172-1.00003-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this chapter is to provide an updated and concise systematic review on taxonomy, history, arthropod vectors, vertebrate hosts, animal disease, and geographic distribution of all arboviruses known to date to cause disease in homeotherm (endotherm) vertebrates, except those affecting exclusively man. Fifty arboviruses pathogenic for animals have been documented worldwide, belonging to seven families: Togaviridae (mosquito-borne Eastern, Western, and Venezuelan equine encephalilitis viruses; Sindbis, Middelburg, Getah, and Semliki Forest viruses), Flaviviridae (mosquito-borne yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile, Usutu, Israel turkey meningoencephalitis, Tembusu and Wesselsbron viruses; tick-borne encephalitis, louping ill, Omsk hemorrhagic fever, Kyasanur Forest disease, and Tyuleniy viruses), Bunyaviridae (tick-borne Nairobi sheep disease, Soldado, and Bhanja viruses; mosquito-borne Rift Valley fever, La Crosse, Snowshoe hare, and Cache Valley viruses; biting midges-borne Main Drain, Akabane, Aino, Shuni, and Schmallenberg viruses), Reoviridae (biting midges-borne African horse sickness, Kasba, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki, equine encephalosis, Peruvian horse sickness, and Yunnan viruses), Rhabdoviridae (sandfly/mosquito-borne bovine ephemeral fever, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, vesicular stomatitis-Alagoas, and Coccal viruses), Orthomyxoviridae (tick-borne Thogoto virus), and Asfarviridae (tick-borne African swine fever virus). They are transmitted to animals by five groups of hematophagous arthropods of the subphyllum Chelicerata (order Acarina, families Ixodidae and Argasidae-ticks) or members of the class Insecta: mosquitoes (family Culicidae); biting midges (family Ceratopogonidae); sandflies (subfamily Phlebotominae); and cimicid bugs (family Cimicidae). Arboviral diseases in endotherm animals may therefore be classified as: tick-borne (louping ill and tick-borne encephalitis, Omsk hemorrhagic fever, Kyasanur Forest disease, Tyuleniy fever, Nairobi sheep disease, Soldado fever, Bhanja fever, Thogoto fever, African swine fever), mosquito-borne (Eastern, Western, and Venezuelan equine encephalomyelitides, Highlands J disease, Getah disease, Semliki Forest disease, yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile encephalitis, Usutu disease, Israel turkey meningoencephalitis, Tembusu disease/duck egg-drop syndrome, Wesselsbron disease, La Crosse encephalitis, Snowshoe hare encephalitis, Cache Valley disease, Main Drain disease, Rift Valley fever, Peruvian horse sickness, Yunnan disease), sandfly-borne (vesicular stomatitis-Indiana, New Jersey, and Alagoas, Cocal disease), midge-borne (Akabane disease, Aino disease, Schmallenberg disease, Shuni disease, African horse sickness, Kasba disease, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki disease, equine encephalosis, bovine ephemeral fever, Kotonkan disease), and cimicid-borne (Buggy Creek disease). Animals infected with these arboviruses regularly develop a febrile disease accompanied by various nonspecific symptoms; however, additional severe syndromes may occur: neurological diseases (meningitis, encephalitis, encephalomyelitis); hemorrhagic symptoms; abortions and congenital disorders; or vesicular stomatitis. Certain arboviral diseases cause significant economic losses in domestic animals-for example, Eastern, Western and Venezuelan equine encephalitides, West Nile encephalitis, Nairobi sheep disease, Rift Valley fever, Akabane fever, Schmallenberg disease (emerged recently in Europe), African horse sickness, bluetongue, vesicular stomatitis, and African swine fever; all of these (except for Akabane and Schmallenberg diseases) are notifiable to the World Organisation for Animal Health (OIE, 2012).
    Advances in Virus Research 01/2014; 89:201-75. DOI:10.1016/B978-0-12-800172-1.00005-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.
    Advances in Virus Research 01/2014; 88:315-72. DOI:10.1016/B978-0-12-800098-4.00007-6