Integrative and Comparative Biology (Integr Comp Biol)

Publisher: Society for Integrative and Comparative Biology, Oxford University Press (OUP)

Journal description

Integrative and Comparative Biology (ICB), formerly American Zoologist, is one of the most highly respected and cited journals in the field of biology. The journal's primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB's peer-reviewed symposia provide first class syntheses of the top research in a field, perfect for classes or a quick update. ICB also publishes book reviews, reports, and special bulletins.

Current impact factor: 2.93

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.929
2013 Impact Factor 2.969
2012 Impact Factor 3.023
2011 Impact Factor 2.447
2010 Impact Factor 2.626
2009 Impact Factor 1.979
2008 Impact Factor 2.74
2007 Impact Factor 2.66
2006 Impact Factor 2.439
2005 Impact Factor 2.232
2004 Impact Factor 1.866
2003 Impact Factor 1.083

Impact factor over time

Impact factor

Additional details

5-year impact 3.66
Cited half-life 8.00
Immediacy index 1.09
Eigenfactor 0.01
Article influence 1.36
Website Integrative and Comparative Biology website
Other titles Integrative and comparative biology (Online), Integrative and comparative biology
ISSN 1557-7023
OCLC 50649976
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Oxford University Press (OUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print must be accompanied by set statement (see link)
    • Pre-print must not be replaced with post-print, instead a link to published version with amended set statement should be made
    • Pre-print on author's personal website, employer website, free public server or pre-prints in subject area
    • Post-print in Institutional repositories or Central repositories
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Eligible authors may deposit in OpenDepot
    • The publisher will deposit in PubMed Central on behalf of NIH authors
    • Publisher last contacted on 19/02/2015
    • This policy is an exception to the default policies of 'Oxford University Press (OUP)'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: This article provides models and code for numerically simulating muscle-fluid-structure interactions (FSIs). This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics and simple mathematical models to describe the forces generated by muscular contractions are introduced in most biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of muscles. The muscles' forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily modified to many other biological applications for educational purposes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 09/2015; DOI:10.1093/icb/icv102
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancrustacea (Hexapoda plus Crustacea) display an enormous diversity of eye designs, including multiple types of compound eyes and single-chambered eyes, often with color vision and/or polarization vision. Although the eyes of some pancrustaceans are well-studied, there is still much to learn about the evolutionary paths to this amazing visual diversity. Here, we examine the evolutionary history of eyes and opsins across the principle groups of Pancrustacea. First, we review the distribution of lateral and median eyes, which are found in all major pancrustacean clades (Oligostraca, Multicrustacea, and Allotriocarida). At the same time, each of those three clades has taxa that lack lateral and/or median eyes. We then compile data on the expression of visual r-opsins (rhabdomeric opsins) in lateral and median eyes across Pancrustacea and find no evidence for ancient opsin clades expressed in only one type of eye. Instead, opsin clades with eye-specific expression are products of recent gene duplications, indicating a dynamic past, during which opsins often changed expression from one type of eye to another. We also investigate the evolutionary history of peropsins and r-opsins, which are both known to be expressed in eyes of arthropods. By searching published transcriptomes, we discover for the first time crustacean peropsins and suggest that previously reported odonate opsins may also be peropsins. Finally, from analyzing a reconciled, phylogenetic tree of arthropod r-opsins, we infer that the ancestral pancrustacean had four visual opsin genes, which we call LW2, MW1, MW2, and SW. These are the progenitors of opsin clades that later were variously duplicated or lost during pancrustacean evolution. Together, our results reveal a particularly dynamic history, with losses of eyes, duplication and loss of opsin genes, and changes in opsin expression between types of eyes.
    Integrative and Comparative Biology 08/2015; DOI:10.1093/icb/icv100
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regeneration is a developmental process that allows an organism to re-grow a lost body part. Historically, the most studied aspect of limb regeneration across Pancrustacea is its morphological basis and its dependence on successful molting. Although there are distinct morphological differences in regeneration processes between insects and crustaceans, in both groups the phenomenon is initiated via formation of a blastema, followed by proliferation, dedifferentiation, and redifferentiation of blastemal cells to generate a functional limb. In recent years, with the availability of sequence data and tools to manipulate gene expression, the emphasis of this field has shifted toward the genetic basis of limb regeneration. Among insects this focus is on genes that are known to be required during the development of legs in embryos. RNA interference-mediated functional studies conducted during regeneration of imaginal discs of Drosophila melanogaster, and nymphal legs of Gryllus bimaculatus reveal that several conserved pathways and transcription factors (Wingless, Decapentaplegic, Hedgehog, Dachshund) are required for successful regeneration. In contrast to studies on the regeneration of insects' limbs, work on crustaceans has focused on the hormonal basis of the re-growth of limbs. Regeneration in decapods, like Uca pugilator and Gecarcinus lateralis, occurs in discrete phases of growth in tandem with the stages of the molt cycle. Recent studies have shown that ecdysteroid hormone signaling is necessary for blastemal proliferation. Although the current research emphases of limb regeneration in insect and crustacean are fairly distinct, the results generated by functional studies of a wide array of regeneration genes will be beneficial for generating testable regeneration models.
    Integrative and Comparative Biology 08/2015; DOI:10.1093/icb/icv101
  • [Show abstract] [Hide abstract]
    ABSTRACT: The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 08/2015; DOI:10.1093/icb/icv098
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insects and crustaceans represent critical, dominant animal groups (by biomass and species number) in terrestrial and aquatic systems, respectively. Insects (hexapods) and crustaceans are historically grouped under separate taxonomic classes within the Phylum Arthropoda, and the research communities studying hexapods and crustaceans are quite distinct. More recently, the hexapods have been shown to be evolutionarily derived from basal crustaceans, and the clade Pancrustacea recognizes this relationship. This recent evolutionary perspective, and the fact that the Society for Integrative and Comparative Biology has strong communities in both invertebrate biology and insect physiology, provides the motivation for this symposium. Speakers in this symposium were selected because of their expertise in a particular field of insect or crustacean physiology, and paired in such a way as to provide a comparative view of the state of the current research in their respective fields. Presenters discussed what aspects of the physiological system are clearly conserved across insects and crustaceans and how cross-talk between researchers utilizing insects and crustaceans can fertilize understanding of such conserved systems. Speakers were also asked to identify strategies that would enable improved understanding of the evolution of physiological systems of the terrestrial insects from the aquatic crustaceans. The following collection of articles describes multiple recent advances in our understanding of Pancrustacean physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 08/2015; DOI:10.1093/icb/icv093
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experiencing the thrill of an original scientific discovery can be transformative to students unsure about becoming a scientist, yet few courses offer authentic research experiences. Increasingly, cutting-edge discoveries require an interdisciplinary approach not offered in current departmental-based courses. Here, we describe a one-semester, learning laboratory course on organismal biomechanics offered at our large research university that enables interdisciplinary teams of students from biology and engineering to grow intellectually, collaborate effectively, and make original discoveries. To attain this goal, we avoid traditional "cookbook" laboratories by training 20 students to use a dozen research stations. Teams of five students rotate to a new station each week where a professor, graduate student, and/or team member assists in the use of equipment, guides students through stages of critical thinking, encourages interdisciplinary collaboration, and moves them toward authentic discovery. Weekly discussion sections that involve the entire class offer exchange of discipline-specific knowledge, advice on experimental design, methods of collecting and analyzing data, a statistics primer, and best practices for writing and presenting scientific papers. The building of skills in concert with weekly guided inquiry facilitates original discovery via a final research project that can be presented at a national meeting or published in a scientific journal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 08/2015; DOI:10.1093/icb/icv095
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have developed a separate tracheal system for the delivery of oxygen to tissues, so this particular tradeoff between oxygen transport and immune function is avoided. Few studies in crustaceans or insects have tested whether mounting an immune response might impact other functions of the cardiovascular system or alter integrity of the gut, respiratory, and reproductive epithelia where processes of the attack on pathogens, defense by the host, and physiological functions play out. Such tradeoffs might be fruitfully addressed by capitalizing on the ease of molecular and genetic manipulation in insects. Given the extensive similarities between the insect and the crustacean immune systems, such models of epithelial infection could benefit our understanding of the physiological consequences of immune defense in all of the Pancrustacea. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 07/2015; DOI:10.1093/icb/icv094
  • [Show abstract] [Hide abstract]
    ABSTRACT: When animals swim in aquatic habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. We addressed this issue using microscopic larvae of invertebrates in "fouling communities" growing on docks and ships to ask how swimming affects the transport of larvae between moving water and surfaces from which they disperse and onto which they recruit. Field measurements of the motion of water over fouling communities were used to design realistic turbulent wavy flow in a laboratory wave-flume over early-stage fouling communities. Fine-scale measurements of rapidly-varying water-velocity fields were made using particle-image velocimetry, and of dye-concentration fields (analog for chemical cues from the substratum) were made using planar laser-induced fluorescence. We used individual-based models of larvae that were swimming, passively sinking, passively rising, or were passive and neutrally buoyant to determine how their trajectories were affected by their motion through the water, rotation by local shear, and transport by ambient flow. Swimmers moved up and down in the turbulent flow more than did neutrally buoyant larvae. Although more of the passive sinkers landed on substrata below them, and more passive risers on surfaces above, swimming was the best strategy for landing on surfaces if their location was not predictable (as is true for fouling communities). When larvae moved within 5 mm of surfaces below them, passive sinkers and neutrally-buoyant larvae landed on the substratum, whereas many of the swimmers were carried away, suggesting that settling larvae should stop swimming as they near a surface. Swimming and passively-rising larvae were best at escaping from a surface below them, as precompetent larvae must do to disperse away. Velocities, vorticities, and odor-concentrations encountered by larvae fluctuated rapidly, with peaks much higher than mean values. Encounters with concentrations of odor or with vorticities above threshold increased as larvae neared the substratum. Although microscopic organisms swim slowly, their locomotory behavior can affect where they are transported by the movement of ambient water as well as the signals they encounter when they move within a few centimeters of surfaces. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 07/2015; DOI:10.1093/icb/icv092
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ecology as a process is shaped by biotic and abiotic influences. In some cases, a single type of chemical can have effects on an ecosystem, effects that are disproportionate to its relative mass, such that the ecosystem would organize differently in the absence of this type of chemical. The hallmark examples are those “molecules of keystone significance” (Ferrer and Zimmer 2012), such as the biosequestered alkaloid tetrodotoxin. Keystone molecules are analogous to keystone species in their capacity to mediate large ecological effects disproportionate to their mass. Some predators/grazers may evolve the ability to sense toxins being released from potential prey, making the toxin a semiochemical, molecules that serve as information-bearing cues among organisms (Ferrer and Zimmer 2012). Not all semiochemicals may be of keystone significance but they do have a greater effect on ecology that would be predicted, based on their abundance relative to all biomolecules, and could be said to “organize ecology.”
    Integrative and Comparative Biology 07/2015; 55(3):444-446. DOI:10.1093/icb/icv089
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic modifications control gene expression without altering the primary DNA sequence. However, little is known about DNA methylation in invertebrates and its evolution. Here, we characterize two types of genomic DNA methylation in ctenophores, 5-methyl cytosine (5-mC) and the unconventional form of methylation 6-methyl adenine (6-mA). Using both bisulfite sequencing and an ELISA-based colorimetric assay, we experimentally confirmed the presence of 5-mC DNA methylation in ctenophores. In contrast to other invertebrates studied, Mnemiopsis leidyi has lower levels of genome-wide 5-mC methylation, but higher levels of 5-mC methylation in promoters when compared with gene bodies. Phylogenetic analysis showed that ctenophores have distinct forms of DNA methyltransferase 1 (DNMT1); the zf-CXXC domain type, which localized DNMT1 to CpG sites, and is a metazoan specific innovation. We also show that ctenophores encode the full repertoire of putative enzymes for 6-mA DNA methylation, and these genes are expressed in the aboral organ of Mnemiopsis. Using an ELISA-based colorimetric assay, we experimentally confirmed the presence of 6-mA methylation in the genomes of three different species of ctenophores, M. leidyi, Beroe abyssicola, and Pleurobrachia bachei. The functional role of this novel epigenomic mark is currently unknown. In summary, despite their compact genomes, there is a wide variety of epigenomic mechanisms employed by basal metazoans that provide novel insights into the evolutionary origins of biological novelties. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 07/2015; DOI:10.1093/icb/icv086
  • [Show abstract] [Hide abstract]
    ABSTRACT: The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 07/2015; DOI:10.1093/icb/icv084
  • [Show abstract] [Hide abstract]
    ABSTRACT: The natural habitats of fishes are characterized by movements of water driven by a multitude of physical processes of either natural or human origin. The resultant unsteadiness is exacerbated when flow interacts with surfaces, such as the bottom and banks, and protruding objects, such as corals, boulders, and woody debris. There is growing interest in the impacts on performance and behavior of fishes swimming in "turbulent flows". The ability of fishes to stabilize their postures and their swimming trajectories is thought to be important in determining species' distributions and densities, and hence the resultant assemblages in various habitats. A theoretical framework is proposed to quantify the interactions of fish and flows. Dimensionless parameters are derived based on a physical description of the flow structures and different regimes are predicted describing fishes' responses to a wide range of physical perturbations. We found the ratio of eddy size to fish size, the "momentum ratio" (ratio between momentum of the eddy and the momentum of the fish), as well as the time of interaction between eddy and fish to be especially important in determining thresholds for the fish's posture and trajectory. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    Integrative and Comparative Biology 07/2015; 55(4). DOI:10.1093/icb/icv085