Cancer biology & therapy (Canc Biol Ther)

Publisher: Taylor & Francis

Journal description

Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.

Current impact factor: 3.07

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.072
2013 Impact Factor 3.63
2012 Impact Factor 3.287
2011 Impact Factor 2.636
2010 Impact Factor 2.907
2009 Impact Factor 2.711
2008 Impact Factor 2.761
2007 Impact Factor 2.873
2006 Impact Factor 2.818
2005 Impact Factor 2.981
2004 Impact Factor 3.279
2003 Impact Factor 3.024

Impact factor over time

Impact factor

Additional details

5-year impact 3.62
Cited half-life 5.70
Immediacy index 0.70
Eigenfactor 0.02
Article influence 1.00
Website Cancer Biology and Therapy website
Other titles Cancer biology & therapy (Online), Cancer biology & therapy, Cancer biology and therapy
ISSN 1555-8576
OCLC 60037853
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • On author's personal website or departmental website immediately
    • On institutional repository or subject-based repository after either 12 months embargo
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • The publisher will deposit in on behalf of authors to a designated institutional repository including PubMed Central, where a deposit agreement exists with the repository
    • STM: Science, Technology and Medicine
    • Publisher last contacted on 25/03/2014
    • This policy is an exception to the default policies of 'Taylor & Francis'
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and five mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocks anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1108492
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fat4 functions as a Hippo signaling regulator which is involved in mammalian tissue development, differentiation and tumorigenesis. Loss of Fat4 due to frequent gene mutation was detected in a variety of tumors including gastric cancer, where Fat4 was recognized as a tumor suppressor, repressing cancer cell proliferation and adhesion. However, the detailed mechanisms linking Fat4 to its diverse functions and clinicopathological characteristics in gastric cancer remain unclear. Here, we silenced Fat4 using Fat4-shRNA in gastric cancer cells and found that this suppression led to the increase in phosphorylated Yap and nuclear accumulation of Yap, which associated to the promoted proliferation, migration and cell cycle progression. Then we transfected a full-length Fat4 into the Fat4-silenced cells, and found the decrease in phosphorylated Yap and inhibition of the cell cycle progression. Intriguingly, Fat4 reduction also leads to the accumulation of cytoplasmic β-catenin via the loss of restraining to cytoplasmic Yap instead of β-catenin transcription promotion. The Fat4-silenced cells which were treated with 5-FU, Cisplatin, Oxaliplatin and Paclitaxel individually demonstrated less sensitivities to these chemotherapy drugs compared with the control cells. Furthermore, immunohistochemical analysis revealed that Fat4 expression was significantly reduced in gastric cancer tissues compared with adjacent noncancerous tissues, and negatively correlated with tumor infiltration, lymph node metastasis and cumulative survival rate. In conclusion, Fat4 expression is deceased in gastric cancer cells, leading to nuclear translocation of Yap and correlates with poor prognosis.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1108488
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thymic epithelial cells give rise to both thymoma and thymic carcinoma. A crucial advance in thymic epithelial tumors (TET) management may derive from the identification of novel molecular biomarkers able to improve diagnosis, prognosis and treatment planning. In a previous study, we identified microRNAs that were differentially expressed in tumor vs normal thymic tissues. Among the microRNAs resulted up-regulated in TET tissues, we evaluated miR-21-5p, miR-148a-3p, miR-141-3p, miR-34b-5p, miR-34c-5p, miR-455-5p as blood plasma circulating non-invasive biomarkers for TET management. We firstly report that the expression levels of specific onco-miRNAs, that we found up-regulated in the blood plasma collected from TET patients at surgery, resulted significantly reduced in follow-up samples. This pilot study suggests that circulating miR-21-5p and miR-148a-3p could represent novel non-invasive biomarkers to evaluate the efficacy of therapy and the prognosis of TET.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1108493
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tangeretin, a major phytochemicals in tangerine peels - an important Chinese herb, has been found to have anti-carcinogenic properties. To improve bioavailability and increase potency of tangeretin, its derivative, 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF), has been synthesized and shown potent inhibition of proliferation activity against human breast and leukemia cancer cell lines. In this study, we have further investigated the anticancer effects of 5-AcTMF on CL1-5 non-small cell lung cancer cells (NSCLC) both in vitro and in vivo and demonstrated that 5-AcTMF effectively inhibited cancer cell proliferation, induced G2/M-phase arrest associated with cdc2 and CDC25c and increased in the apoptotic cells associated with caspase activation, down regulation of Bcl-2, XIAP and Survivn, inducing release of cytochrome c into the cytosol and disruption of mitochondrial membrane potential. We also found that 5-AcTMF treatment of CL1-5 activated autophagy, indicated by triggered autophagosome formation and increased LC3-II levels and formation of LC3 puncta. Moreover, we also found that 5-AcTMF lowered phophoatidylinositol 3-kinase/AKT/mTOR signaling pathway. Over-expression of AKT by AKT cDNA transfection decreased 5-AcTMF mediated apoptosis and autophagy, supporting the induction of apoptosis and autophagy by inhibition of AKT pathway. In an animal study, 5-AcTMF effectively delayed tumor growth in a nude mouse model of CL1-5 xenografts without observed adverse effect. Immunohistochemistry Analysis indicated that 5-AcTMF induced CL1-5 cell apoptosis and autophagy in vivo. Taken together, these data demonstrate that 5-AcTMF is a novel small molecule agent that can inhibit NSCLC cell proliferation, and induce G(2)/M phase arrest and via the mitochondrial apoptotic pathway and autophagy.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1108491
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present two patients with metastatic colorectal cancer who had progressed despite treatment with first-line FOLFOX and second-line FOLFIRI combination chemotherapy regimens. After failing these fluoropyrimidine-based regimens, both patients received additional cytotoxic and targeted therapies with eventual disease progression. These therapies included capecitabine plus dabrafenib and trametinib, regorafenib monotherapy, and regorafenib with panitumumab. After exhausting available options, both patients were offered regorafenib with either 5-fluorouracil (5-FU) or capecitabine. These therapies are individually approved for the treatment of colorectal cancer but have not yet been studied in combination. This regimen produced stable disease in both patients with acceptable toxicity. One patient continued therapy for 17 months. Although these patients previously progressed during treatment with regorafenib, capecitabine or 5-FU, the combination had some activity in both cases of refractory metastatic colorectal cancer and may be considered in the palliative setting. In bedside-to-bench cell culture experiments performed after the clinical observations, we observed sensitivity of human colorectal cancer cell lines (N=4) to single agent regorafenib or 5-FU and evidence of synergy with the combination therapy. Synergistic effects were noted in colorectal cancer cells with KRAS mutation, BRAF mutation, and p53 mutation, as well as mismatch repair deficient cells. Regorafenib suppressed Mcl-1 and Bcl-XL in treated cancer cells that may have contributed to the anticancer efficacy including in combination with 5-FU. The safety and efficacy of regorafenib with 5-FU or capecitabine in combination should be further investigated as a therapy for patients with refractory metastatic colorectal cancer, including individuals who had progressed on regorafenib monotherapy.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1113355
  • [Show abstract] [Hide abstract]
    ABSTRACT: Menin is encoded by the MEN1 gene, which is mutated in an inherited human syndrome, multiple endocrine neoplasia type 1(MEN1). Menin is primarily nuclear protein, acting as a tumor suppressor in endocrine organs, but as an oncogenic factor in the mixed lineage leukemia, in a tissue-specific manner. Recently, the crystal structures of menin with different binding partners reveal menin as a key scaffold protein that functionally interacts with various partners to regulate gene transcription in the nucleus. However, outside the nucleus, menin also regulates multiple signaling pathways that traverse the cell surface membrane. The precise nature regarding to how menin associates with the membrane fraction is poorly understood. Here we show that a small fraction of menin associates with the cell membrane fraction likely via serine palmitoylation. Moreover, the majority of the membrane-associated menin may reside inside membrane vesicles, as menin is protected from trypsin-mediated proteolysis, but disruption of the membrane fraction using detergent abolishes the detection. Consistently, cellular staining for menin also reveals the distribution of menin in the cell membrane and the punctate-like cell organelles. Our findings suggest that part of intracellular menin associates with the cell membrane peripherally as well as resides within the membrane vesicles.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1108497
  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of skin metastases is a common event in patients affected by advanced breast cancer, usually associated with systemic disease progression. Here we describe two cases of diffuse cutaneous metastases from HER2-overexpressing breast cancer occurring despite a dramatic response in liver and bone, respectively, during treatment with anti-HER2 antibodies Trastuzumab and Pertuzumab. We discuss the reasons for this discrepancy and suggest a possible implication of impaired immune response in the skin. Future research should provide strategies to overcome the induction of immune privilege in the skin in order to avoid discontinuation of effective treatments.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1108490
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new bigenic mouse model, engineered with the overexpression of PSGR and the knockout of PTEN, has been used to study the relationship between two genes and disease progression. A study in Oncogene (Rodriguez et al.) has shown that these two genetic polymorphisms synergistically promote the development of prostate cancer.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1108498
  • [Show abstract] [Hide abstract]
    ABSTRACT: RFA is used in treatment of patients with hepatocellular cancer (HCC); however, tumor location and size often limit therapeutic efficacy. The absence of a realistic animal model and a radiofrequency ablation (RFA) suitable for small animals presents significant obstacles in developing new strategies. To establish a realistic RFA platform that allows the development of effective RFA-integrated treatment in an orthotopic murine model of HCC, a human cardiac radiofrequency generator was modified for murine use. Parameters were optimized and RFA was then performed in normal murine livers and HCCs. The effects of RFA were monitored by measuring the ablation zone and transaminases. The survival of tumor-bearing mice with and without RFA was monitored, ablated normal liver and HCCs were evaluated macroscopically and histologically. We demonstrated that tissue-mimicking media was able to optimize RFA parameters. Utilizing this information we performed RFA in normal and HCC-bearing mice. RFA was applied to hepatic parenchyma and completely destroyed small tumors and part of large tumors. Localized healing of the ablation and normalization of transaminases occurred within 7 days post RFA. RFA treatment extended the survival of small tumor-bearing mice. They survived at least 5 months longer than the controls; however, mice with larger tumors only had a slight therapeutic effect after RFA. Collectively, we performed RFA in murine HCCs and observed a significant therapeutic effect in small tumor-bearing mice. The quick recovery of tumor-bearing mice receiving RFA mimics observations in human subjects. This platform provides us a unique opportunity to study RFA in HCC treatment.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1095412
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic lymphoma kinase (ALK) is correlated with oncogenesis in different types of cancers, such as anaplastic large cell lymphoma, lung cancer, neuroblastoma, and even breast cancer, by abnormal fusion of ALK or non-fusion ALK activation. ALK is a receptor tyrosine kinase, with a single transmembrane domain, that plays an important role in development. Upon ligand binding to the extracellular domain, the receptor undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. In recent years, ALK inhibitors have been developed for cancer treatment. These inhibitors target ALK activity and show effectiveness in ALK-positive non-small cell lung cancer. However, acquired treatment resistance makes the future of this therapy unclear; new strategies are underway to overcome the limitations of current ALK inhibitors.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1095407
  • [Show abstract] [Hide abstract]
    ABSTRACT: MK-1775 is the first-in-class selective Wee1 inhibitor which has been demonstrated to synergize with CHK1 inhibitors in various malignancies. In this study, we report that the pan-histone deacetylase inhibitor (HDACI) panobinostat synergies with MK-1775 in acute myeloid leukemia (AML), a malignancy which remains a clinical challenge and requires more effective therapies. Using both AML cell line models and primary patient samples, we demonstrated that panobinostat and MK-1775 synergistically induced proliferation arrest and cell death. We also demonstrated that panobinostat had equal anti-leukemic activities against primary AML blasts derived from patients either at initial diagnosis or at relapse. Interestingly, treatment with panobinostat alone or in combination with MK-1775 resulted in decreased Wee1 protein levels as well as downregulation of the CHK1 pathway. shRNA knockdown of CHK1 significantly sensitized AML cells to MK-1775 treatment, while knockdown of Wee1 significantly enhanced both MK-1775- and panobinostat-induced cell death. Our results demonstrate that panobinostat synergizes with MK-1775 in AML cells, at least in part through downregulation of CHK1 and/or Wee1, providing compelling evidence for the clinical development of the combination treatment in AML.
    Cancer biology & therapy 11/2015; DOI:10.1080/15384047.2015.1095406
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Lung cancer is the most common cancer that is caused by perturbation of regulatory pathways rather than dysfunction of a single gene. Cisplatin (CDDP; cis-diamminedichloroplatinum II) is the first member of a class of platinum-containing anti-cancer medication, which binds to DNA and triggers apoptosis. CDDP-based chemotherapy is used to treat various types of cancers. However, the efficacy of CDDP in the treatment of non-small-cell lung cancer (NSCLC) is limited by acquired drug resistance. MicroRNAs have recently emerged as key regulators of cancers, and miR-26a is one of down-regulated miRNAs in A549/CDDPres cell line. This study aimed to investigate the role of miR-26a in CDDP resistance in NSCLC as well as the underlying mechanisms. Methods: In this study, we analyzed expressional profiles of CDDP resistance-related mRNA, miRNA, and transcription factors (TF) that regulate miRNA expression in NSCLC. A549 cells were treated with CDDP, miR-26a mimic, or miR-26a inhibitor, and followed by biological analysis including drug sensitivity assay, colony formation assay, terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) assay, and cell cycle analysis. Luciferase assay was used to determine the target of miR-26a. The regulation of miR-26a in Akt pathway was measured by western blot. Results: High mobility group A (HMGA) 2 was identified as the target of miR-26a. Overexpression of miR-26a in A549 cells inhibited G1-S transition, increased cell death in response to CDDP treatment, and decreased the colony formation of A549 cells. MiR-26a significantly decreased the expression of E2F1, diminished Akt phosphorylation, and down-regulated Bcl2 expression. Cell growth was suppressed by inhibiting HMGA2-mediated E2F1-Akt pathway. Conclusion: MiR-26a is responsible for A549 cell sensitivity in the treatment of CDDP through regulating HMGA2-mediated E2F1-Akt pathway.
    Cancer biology & therapy 10/2015; DOI:10.1080/15384047.2015.1095405
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recurrence of colorectal cancer after chemotherapy is the leading cause of its high mortality. We propose that elucidating the mechanisms of tumor regrowth after chemotherapy in tumor-bearing mice may provide new insights into tumor relapse in cancer patients. We firstly report the identification of a chemokine, CXCL4, that plays an important role in the molecular mechanism of cancer regrowth after chemotherapy. A syngenic transplantation tumor model was established with murine colon cancer CT26 cells and treated with 5-FU. Genome-wide gene expression analysis determined that CXCL4 was transiently upregulated in the tumor model. Systemic overexpression of CXCL4 accelerated cancer growth in vivo, but not in vitro. Conversely, the anti-CXCL4 monoclonal antibody (CXCL4-mab) retarded tumor-regrowth after 5-FU treatment in immune-competent mice, but not nude mice. The CXCL4-mab treatment increased the local expression levels of IFN-γ and Gran-b genes in the tumor-bed, and elevated the function of CTLs against CT26 cells. Thus, the colon cancer cells in responding to the cytotoxic stress of 5-FU produce a high level of CXCL4, which suppresses antitumor immunity to confer the residual cancer cells an advantage for regrowth after chemotherapy. Our findings provide a novel target for developing therapeutics aiming to increase antitumor immunity after chemotherapy.
    Cancer biology & therapy 10/2015; DOI:10.1080/15384047.2015.1095404
  • [Show abstract] [Hide abstract]
    ABSTRACT: EGFR and EGFRvIII are overexpressed in various types of cancer, serving as optimal targets for cancer therapy. Capitalizing on the high specificity of humanized antibody 806 (mAb806) to the EGFR and EGFRvIII overexpressed in cancer, we designed and generated a bivalent recombinant immunotoxin (RIT) by fusing the mAb806-derived bivalent single-chain variable fragment with a diphtheria toxin fragment, DT390. In vitro, DT390-BiscFv806 efficiently internalized into the cells and exhibited high cytotoxicity against the U87 glioblastoma cells and the EGFRvIII-transfected U87 (U87-EGFRvIII) cells with a half maximal inhibition concentration (IC50) of 1.47 nM and 2.26 × 10(-4) nM, respectively. Notably, DT390-BiscFv806 was four orders of magnitude more potent against the U87-EGFRvIII cells than against the parent U87 cells. The cytotoxicity against a group of six head and neck squamous cell carcinoma cell lines were further analyzed, showing an IC50 ranging from 0.24 nM to 156 nM, depending on the expression level of EGFR/EGFRvIII. In animals, the U87-EGFRvIII tumor xenografts grew extremely faster than the parental U87, and systemic administration of DT390-BiscFv806 significantly inhibited the growth of established U87-EGFRvIII and U87 tumor xenografts, showing a growth inhibition rate of 76.3% (59.82-96.2%) and 59.4% (31.5-76.0%), respectively. In pathology, the RIT-treated tumors exhibited a low mitotic activity and a large number of degenerative tumor cells, compared with the control tumors. The results indicate that DT390-BiscFv806 is promising for treatment of various types of cancer, especially for those with high EGFR expression or with EGFR and EGFRvIII co-expression.
    Cancer biology & therapy 10/2015; DOI:10.1080/15384047.2015.1095403
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Cisplatin is an effective agent for triple-negative breast cancer (TNBC) and synergistic activity between cisplatin and capecitabine has been demonstrated by in vitro and in vivo studies. This study was designed as a prospective clinical trial to evaluate the efficacy and safety of capecitabine plus cisplatin (XP) regimen in metastatic TNBC patients pretreated with anthracyclines and taxanes. Patients and methods: Thirty-three patients with metastatic TNBC who had anthracyclines and taxanes as prior therapy were treated with capecitabine 2000 mg/m(2)orally on day 1 through 14 plus cisplatin 75mg/m(2) intravenously on day 1 of a 21-day cycle, followed by capecitabine maintenance medications after a maximum of 6 cycles. The primary end point was objective response rate (ORR) and the secondary end points included progression-free survival (PFS), overall survival (OS) and toxicity profiles. Results: A total of 162 cycles was given. ORR was 63.6%. Median PFS was 8.2 (95%CI: 4.8-11.6) months in the entire population and 10.8 (95%CI: 6.5-15.1) months in responding patients. Median OS was 17.8 (95%CI: 14.4-21.2) months in all enrolled patients and 25.8 (95%CI: 14.6-37.0) months in responding patients. Most adverse events were mild and manageable, with neutropenia and nausea/vomiting as the most common toxicities. Grade 3/4 toxicities included leukopenia (10, 30.3%), neutropenia (10, 30.3%), anemia (2, 6.1%), thrombocytopenia (1, 3.0%), nausea/vomiting (3, 9.1%), hand-foot syndrome (HFS; 1, 3.0%), and sensory neuropathy (1, 3.0%). Conclusions: Capecitabine plus cisplatin demonstrated an excellent activity and an acceptable safety profile in metastatic TNBC patients pretreated with anthracyclines and taxanes.
    Cancer biology & therapy 10/2015; DOI:10.1080/15384047.2015.1095400
  • [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) are important regulators of tumor development and progression. In this study, we aimed to explore the expression and role of miR-622 in hepatocellular carcinoma (HCC). We found that miR-622 was significantly downregulated in human HCC specimens compared to adjacent noncancerous liver tissues. miR-622 downregulation was significantly associated with aggressive parameters and poor prognosis in HCC. Enforced expression of miR-622 significantly decreased the proliferation and colony formation and induced apoptosis of HCC cells. In vivo studies demonstrated that miR-622 overexpression retarded the growth of HCC xenograft tumors. Bioinformatic analysis and luciferase reporter assays revealed that miR-622 directly targeted the 3'-untranslated region (UTR) of mitogen-activated protein 4 kinase 4 (MAP4K4) mRNA. Ectopic expression of miR-622 led to a significant reduction of MAP4K4 expression in HCC cells and xenograft tumors. Overexpression of MAP4K4 partially restored cell proliferation and colony formation and reversed the induction of apoptosis in miR-622-overexpressing HCC cells. Inhibition of JNK and NF-κB signaling phenocopied the anticancer effects of miR-622 on HCC cells. Taken together, miR-622 acts as a tumor suppressor in HCC and restoration of miR-622 may provide therapeutic benefits in the treatment of HCC.
    Cancer biology & therapy 10/2015; DOI:10.1080/15384047.2015.1095402