International Journal of Emerging Electric Power Systems (Int J Emerg Elec Power Syst)

Publisher: De Gruyter

Journal description

International Journal of Emerging Electric Power Systems (IJEEPS) publishes significant research and scholarship related to latest and up-and-coming developments in power systems. The mandate of the journal is to assemble high quality papers from the recent research and development efforts in new technologies and techniques for generation, transmission, distribution and utilization of electric power. The range of topics includes electric power generation sources; integration of unconventional sources into existing power systems; generation planning and control; new technologies and techniques for power transmission, distribution, protection, control and measurement; power system analysis, economics, operation and stability; deregulated power systems; power system communication; metering technologies; demand-side management; industrial electric power distribution and utilization systems.

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
Website International Journal of Emerging Electric Power Systems website
Other titles International journal of emerging electric power systems
ISSN 1553-779X
OCLC 57144921
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

De Gruyter

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Pre-print and abstract on author's personal website only
    • Author's post-print on funder's repository or funder's designated repository at the funding agencys request or as a result of legal obligation.
    • Publisher's version/PDF may be used, on author's personal website, editor's personal website or institutional repository
    • Authors cannot deposit in subject repositories
    • Published source must be acknowledged
    • Must link to publisher version and article’s DOI must be given
    • Set statement to accompany deposit (see policy)
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: High-voltage earthing system design is required to ensure safety compliance and adequate operation of the high-voltage infrastructures. The transmission lines form a solid part of the high-voltage infrastructure. The underground to overhead (UGOH) pole earth grid is one of the main challenges when it comes to transmission line earthing system design. To ensure safety compliance at low cost, counterpoise earthing is used at the UGOH pole for the underground lines. The counterpoise aids in lowering the UGOH pole earth grid resistance. This paper addresses the counterpoise analysis as currently being studied. Furthermore, it introduces the counterpoise mutual voltage between the faulted phase and the counterpoise and its impact at the UGOH pole earth potential rise. Case study is included
    International Journal of Emerging Electric Power Systems 04/2015; 16(3). DOI:10.1515/ijeeps-2014-0010,
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a generalized formulation of Demand Response (DR) under deregulated electricity markets. The problem is scheduling and controls the consumption of electrical loads according to the market price to minimize the energy cost over a day. Taking into account the modeling of customers’ comfort (i.e., preference), the formulation can be applied to various types of loads including what was traditionally classified as critical loads (e.g., air conditioning, lights). The proposed DR scheme is based on Dynamic Programming (DP) framework and solved by DP backward algorithm in which the stochastic optimization is used to treat the uncertainty, if any occurred in the problem. The proposed formulation is examined with the DR problem of different loads, including Heat Ventilation and Air Conditioning (HVAC), Electric Vehicles (EVs) and a newly DR on the water supply systems of commercial buildings. The result of simulation shows significant saving can be achieved in comparison with their traditional (On/Off) scheme.
    International Journal of Emerging Electric Power Systems 04/2015; DOI:10.1515/ijeeps-2014-0147
  • [Show abstract] [Hide abstract]
    ABSTRACT: The electrical vehicles (EVs) can be connected to the grid for power transaction. The vehicle-to-grid (V2G) supports the grid requirements and helps in maintaining the load demands. The grid control center (GCC), aggregator and EV are three key entities in V2G communication. The GCC sends the information about power requirements to the aggregator. The aggregator after receiving the information from the GCC sends the information to the EVs. Based on the information, the interested EV owners participate in power transaction with the grid. The aggregator facilitates the EVs by providing the parking and charging slot. In this paper the queuing model for EVs connected to the grid and development of wireless infrastructure for the EV to Smart Meter communication is proposed. The queuing model is developed and simulated. The path loss models for WiMAX are analyzed and compared. Also, the physical layer of WiMAX protocol is modeled and simulated for the EV to Smart Meter communication in V2G.
    International Journal of Emerging Electric Power Systems 03/2015; 16(2):153-163. DOI:10.1515/ijeeps-2014-0176
  • International Journal of Emerging Electric Power Systems 03/2015; 16(2):117-129. DOI:10.1515/ijeeps-2014-0143
  • [Show abstract] [Hide abstract]
    ABSTRACT: A blackout can take place in entire power system or a part of the system due to extreme voltage instability (voltage collapse) that can appear abruptly. Instability prediction and continuous monitoring of the power system performance is, therefore, known exigent. This paper is conducted with a broad overview of the voltage stability indices, which are previously studied in the literature, and have the same foundation during their formulation. Afterward, an improved voltage stability indicator is introduced as a result of the multi-criteria integration and enhancement of the original indices by employing linear algebra methods. It is found that the proposed algorithm can overcome on the probable limitations from calculating point view. Then comparative analysis of the indices is presented in order to reach a unique consensus about the typical techniques of modal analysis (sensitivity, eigenvalue, right eigenvectors, and bus participation factor) as a precise algorithm. Finally, the IEEE 14-bus, and 30-bus test systems are selected to verify the algorithm, and compare the performance of the improved indicator approach with the existing indices.
    International Journal of Emerging Electric Power Systems 03/2015; 16(2):107-115. DOI:10.1515/ijeeps-2014-0167
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-voltage infrastructure upgrade is expending due to the growth in populations. To save on easement cost and to reduce the environmental impact of these projects, HV transmission lines occupy the same easement as pipelines in many cases. This joint easement introduces the AC interference between transmission lines and pipelines. The induced voltage can reach a limit which will jeopardize the human safety. The cited research studies the induced voltage under the presence of the overhead earth wire (OHEW) using the shielding factor. The work in this paper studies the induced voltage using the OHEW section current along with the superposition theorem. The simulations are compared to the existing research methods. The case study along with the theoretical study discusses the advance accuracy of the proposed method over the existing shield factor used in the presence research. Furthermore, they introduce the effective length along with the effective shielding factor, which aids in computing the additional effect that the OHEW has on the induced voltage
    International Journal of Emerging Electric Power Systems 03/2015; 16(2):131-139. DOI:10.1515/ijeeps-2014-0009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Underfrequency load shedding (UFLS) is a common practice to protect a power system during large generation deficit. The adaptive UFLS schemes proposed in the literature have the drawbacks such as requirement of transmission of local frequency measurements to a central location and knowledge of system parameters, such as inertia constant H and load damping constant D. In this paper, a UFLS scheme that uses only the local frequency measurements is proposed. The proposed method does not require prior knowledge of H and D. The scheme is developed for power systems with and without spinning reserve. The proposed scheme requires frequency measurements free from the oscillations at the swing mode frequencies. Use of an elliptic low pass filter to remove these oscillations is proposed. The scheme is tested on a 2 generator system and the 10 generator New England system. Performance of the scheme with power system stabilizer is also studied.
    International Journal of Emerging Electric Power Systems 01/2015; 16(1). DOI:10.1515/ijeeps-2014-0108
  • International Journal of Emerging Electric Power Systems 01/2015; DOI:10.1515/ijeeps-2014-0134
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a new implementation of a parameter adaptive PID-type fuzzy controller (PAPIDfc) for a grid-supporting inverter of battery to alleviate frequency fluctuations in a wind-diesel power system. A variable speed wind turbine that drives a permanent magnet synchronous generator is assumed for demonstrations. The PAPIDfc controller is built from a set of control rules that adopts the droop method and uses only locally measurable frequency signal. The output control signal is determined from the knowledge base and the fuzzy inference. The input-derivative gain and the output-integral gain of the PAPIDfc are tuned online. To ensure safe battery operating limits, we also propose a protection scheme called intelligent battery protection (IBP). Several simulation experiments are performed by using MATLAB®/SimPowersystems™. Next, to verify the scheme’s effectiveness, the simulation results are compared with the results of conventional controllers. The results demonstrate the effectiveness of the PAPIDfc scheme to control a grid-supporting inverter of the battery in the reduction of frequency fluctuations.
    International Journal of Emerging Electric Power Systems 10/2014; 15(5):429-441. DOI:10.1515/ijeeps-2014-0094
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a minimal spanning tree (MST) algorithm to solve the networks’ reconfiguration problem in radial distribution systems (RDS). The paper focuses on power losses’ reduction by selecting the best radial configuration. The reconfiguration problem is a non-differentiable and highly combinatorial optimization problem. The proposed methodology is a deterministic Kruskal’s algorithm based on graph theory, which is appropriate for this application generating only a feasible radial topology. The proposed MST algorithm has been tested on an actual RDS, which has been split into subsystems.
    International Journal of Emerging Electric Power Systems 10/2014; 15(5):419-427. DOI:10.1515/ijeeps-2013-0094
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the smart grid paradigm, the reactive power control of distributed energy resources (DERs) plays a key role improving the voltage profile in the distribution systems. This topic has been addressed by previous papers in which the Optimal Set-Point Design (OSPD) of DER reactive control, based on a decentralized approach, has been developed. The OSPD determines the set point of a reactive power closed-loop regulation scheme according to an optimization strategy. After briefly recalling the OSPD procedure, the article presents validation studies aiming at testing the effectiveness of the OSPD. The validation is based on a hardware-in-the-loop realtime simulation facility. In particular, an experimental setup has been arranged and presented, in which the system is simulated using the real-time digital simulator (RTDS), while the OSPD has been implemented on a PC in the LabView environment. The OSPD has been developed by considering two different optimization objectives, namely the feeder voltage profile optimization and the distribution losses minimization. The achieved results are then presented and also compared with the ones obtained a classical regulation scheme.
    International Journal of Emerging Electric Power Systems 02/2014; 15(2):151-159.
  • International Journal of Emerging Electric Power Systems 01/2014; 15(2):177-194. DOI:10.1515/ijeeps-2013-0104
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC–DC–AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.
    International Journal of Emerging Electric Power Systems 10/2013; DOI:10.1515/ijeeps-2012-0030
  • [Show abstract] [Hide abstract]
    ABSTRACT: New high-voltage (HV) substations are fed by transmission lines. The position of these lines necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault at the substation could result in an unsafe condition. This article discusses EPR based on substation fault. The pole EPR assessment under substation fault is assessed with and without mutual impedance consideration. Split factor determination with and without the mutual impedance of the line is also discussed. Furthermore, a simplified formula to compute the pole grid current under substation fault is included. Also, it includes the introduction of the n factor which determines the number of poles that required earthing assessments under substation fault. A case study is shown.
    International Journal of Emerging Electric Power Systems 09/2013; 14(5):499-507. DOI:10.1515/ijeeps-2012-0034
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article presents a comprehensive statistical analysis of data obtained from a wide range of literature on the most widely used appliances in the UK residential load sector, as well as a comprehensive technology and market survey conducted by the authors. The article focuses on the individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, which is particularly important for implementing load-use statistics in power system analysis. In addition to this, device ownership statistics and probability density functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information that provides a useful database for the wider research community.
    International Journal of Emerging Electric Power Systems 09/2013; 14(5):509-523. DOI:10.1515/ijeeps-2013-0078
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article presents a control strategy for a three-phase grid interactive voltage source inverter that links a renewable energy source to the utility grid through a LCL-type filter. An optimized LCL-type filter has been designed and modeled so as to reduce the current harmonics in the grid, considering the conduction and switching losses at constant modulation index (Ma). The control strategy adopted here decouples the active and reactive power loops, thus achieving desirable performance with independent control of active and reactive power injected into the grid. The startup transients can also be controlled by the implementation of this proposed control strategy: in addition to this, optimal LCL filter with lesser conduction and switching copper losses as well as core losses. A trade-off has been made between the total losses in the LCL filter and the Total Harmonic Distortion (THD%) of the grid current, and the filter inductor has been designed accordingly. In order to study the dynamic performance of the system and to confirm the analytical results, the models are simulated in the MATLAB/Simulink environment, and the results are analyzed.
    International Journal of Emerging Electric Power Systems 09/2013; 14(5):477-486. DOI:10.1515/ijeeps-2013-0015
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article proposed coordinated tuning and real-time implementation of power system stabilizer (PSS) with static var compensator (SVC) in multi-machine power system. The design of proposed coordinated damping controller is formulated as an optimization problem, and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization. Here, PSS with SVC installed in multi-machine system is examined. The coordinated tuning among the damping controllers is performed on the non-linear power system dynamic model. Finally, the proposed coordinated controller performance is discussed with time-domain simulations. Different loading conditions are employed on the test system to test the robustness of proposed coordinate controller, and the simulation results are compared with four different control schemes. To validate the proposed controller, the test power system is also implemented on real-time (OPAL-RT) simulator, and acceptable results are reported for its verifications.
    International Journal of Emerging Electric Power Systems 09/2013; 14(5):487-498. DOI:10.1515/ijeeps-2013-0049