The Journal of Immunology (J Immunol )

Publisher: American Association of Immunologists

Description

The JI publishes novel results in all areas of experimental immunology.

  • Impact factor
    5.52
  • 5-year impact
    5.67
  • Cited half-life
    7.70
  • Immediacy index
    0.95
  • Eigenfactor
    0.33
  • Article influence
    2.21
  • Website
    The Journal of Immunology website
  • Other titles
    Journal of immunology (Baltimore, Md.: 1950: Online), The journal of immunology, JI
  • ISSN
    1550-6606
  • OCLC
    34394395
  • Material type
    Document, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The spatial and temporal organization of T cell signaling molecules is increasingly accepted as a crucial step in controlling T cell activation. CD222, also known as the cation-independent mannose 6-phosphate/insulin-like growth factor 2 receptor, is the central component of endosomal transport pathways. In this study, we show that CD222 is a key regulator of the early T cell signaling cascade. Knockdown of CD222 hampers the effective progression of TCR-induced signaling and subsequent effector functions, which can be rescued via reconstitution of CD222 expression. We decipher that Lck is retained in the cytosol of CD222-deficient cells, which obstructs the recruitment of Lck to CD45 at the cell surface, resulting in an abundant inhibitory phosphorylation signature on Lck at the steady state. Hence, CD222 specifically controls the balance between active and inactive Lck in resting T cells, which guarantees operative T cell effector functions.
    The Journal of Immunology 08/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput sequencing allows detailed study of the BCR repertoire postimmunization, but it remains unclear to what extent the de novo identification of Ag-specific sequences from the total BCR repertoire is possible. A conjugate vaccine containing Haemophilus influenzae type b (Hib) and group C meningococcal polysaccharides, as well as tetanus toxoid (TT), was used to investigate the BCR repertoire of adult humans following immunization and to test the hypothesis that public or convergent repertoire analysis could identify Ag-specific sequences. A number of Ag-specific BCR sequences have been reported for Hib and TT, which made a vaccine containing these two Ags an ideal immunological stimulus. Analysis of identical CDR3 amino acid sequences that were shared by individuals in the postvaccine repertoire identified a number of known Hib-specific sequences but only one previously described TT sequence. The extension of this analysis to nonidentical, but highly similar, CDR3 amino acid sequences revealed a number of other TT-related sequences. The anti-Hib avidity index postvaccination strongly correlated with the relative frequency of Hib-specific sequences, indicating that the postvaccination public BCR repertoire may be related to more conventional measures of immunogenicity correlating with disease protection. Analysis of public BCR repertoire provided evidence of convergent BCR evolution in individuals exposed to the same Ags. If this finding is confirmed, the public repertoire could be used for rapid and direct identification of protective Ag-specific BCR sequences from peripheral blood.
    The Journal of Immunology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intratumoral immune activation can induce local and systemic antitumor immunity. Imiquimod is a cream-formulated, TLR7 agonist that is Food and Drug Administration approved for the treatment of nonmelanoma skin cancers, but it has limited activity against melanoma. We studied the antitumor activity and mechanism of action of a novel, injectable, tissue-retained TLR7/8 agonist, 3M-052, which avoids systemic distribution. Intratumoral administration of 3M-052 generated systemic antitumor immunity and suppressed both injected and distant, uninjected wild-type B16.F10 melanomas. Treated tumors showed that an increased level of CCL2 chemokines and infiltration of M1 phenotype-shifted macrophages, which could kill tumor cells directly through production of NO and CCL2, were essential for the antitumor activity of 3M-052. CD8(+) T cells, B cells, type I IFN, IFN-γ, and plasmacytoid dendritic cells were contributed to efficient tumor suppression, whereas perforin, NK cells, and CD4 T cells were not required. Finally, 3M-052 therapy potentiated checkpoint blockade therapy with anti-CTLA-4 and anti-programmed death ligand 1 Abs, even when checkpoint blockade alone was ineffective. Our findings suggest that intratumoral treatment with 3M-052 is a promising approach for the treatment of cancer and establish a rational strategy and mechanistic understanding for combination therapy with intratumoral, tissue-retained TLR7/8 agonist and checkpoint blockade in metastatic cancer.
    The Journal of Immunology 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucosal tissues are subject to frequent pathogen exposure and are major sites for transmission of infectious disease. CD8 T cells play a critical role in controlling mucosa-acquired infections even though their migration into mucosal tissues is tightly regulated. The mechanisms and signals that control the formation of tissue-resident memory CD8 T cells are poorly understood; however, one key regulator of memory CD8 T cell differentiation, mammalian target of rapamycin kinase, can be inhibited by rapamycin. We report that, despite enhancing the formation of memory CD8 T cells in secondary lymphoid tissues, rapamycin inhibits the formation of resident memory CD8 T cells in the intestinal and vaginal mucosa. The ability of rapamycin to block the formation of functional resident CD8 T cells in mucosal tissues protected mice from a model of CD8 T cell–mediated lethal intestinal autoimmunity. These findings demonstrate an opposing role for mammalian target of rapamycin in the formation of resident versus nonresident CD8 T cell immunity.
    The Journal of Immunology 09/2014; 193(5).
  • The Journal of Immunology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a previous study, we identified thioredoxin domain containing 16 (TXNDC16) as a meningioma-associated Ag by protein macroarray screening. Serological screening detected autoantibodies against TXNDC16 exclusively in meningioma patients’ sera and not in sera of healthy controls. TXNDC16 was previously found to be an endoplasmic reticulum (ER)–luminal glycoprotein. In this study, we show an additional ER-associated localization of TXNDC16 in the cytosol by in vitro synthesis, molecular mass shift assay, and flow cytometry. We were able to show TXNDC16 secretion in different human cell lines due to masked and therefore nonfunctional ER retrieval motif. A previously indicated exosomal TXNDC16 secretion could not be confirmed in HEK293 cells. The secreted serum protein TXNDC16 is bound in circulating immune complexes, which were found both in meningioma and healthy blood donor sera. Employing a customized array with 163 overlapping TXNDC16 peptides and measuring autoantibody reactivity, we achieved discrimination of meningioma sera from healthy controls with an accuracy of 87.2% using a set of only five immunogenic TXNDC16 epitopes.
    The Journal of Immunology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The MHC is a large genetic region controlling Ag processing and recognition by T lymphocytes in vertebrates. Approximately 40% of its genes are implicated in innate or adaptive immunity. A putative proto-MHC exists in the chordate amphioxus and in the fruit fly, indicating that a core MHC region predated the emergence of the adaptive immune system in vertebrates. In this study, we identify a putative proto-MHC with archetypal markers in the most basal branch of Metazoans-the placozoan Trichoplax adhaerens, indicating that the proto-MHC is much older than previously believed-and present in the common ancestor of bilaterians (contains vertebrates) and placozoans. Our evidence for a T. adhaerens proto-MHC was based on macrosynteny and phylogenetic analyses revealing approximately one third of the multiple marker sets within the human MHC-related paralogy groups have unique counterparts in T. adhaerens, consistent with two successive whole genome duplications during early vertebrate evolution. A genetic ontologic analysis of the proto-MHC markers in T. adhaerens was consistent with its involvement in defense, showing proteins implicated in antiviral immunity, stress response, and ubiquitination/proteasome pathway. Proteasome genes psma, psmb, and psmd are present, whereas the typical markers of adaptive immunity, such as MHC class I and II, are absent. Our results suggest that the proto-MHC was involved in intracellular intrinsic immunity and provide insight into the primordial architecture and functional landscape of this region that later in evolution became associated with numerous genes critical for adaptive immunity in vertebrates.
    The Journal of Immunology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: APCs are critical in T cell activation and in the induction of T cell tolerance. Epigenetic modifications of specific genes in the APC play a key role in this process, and among them histone deacetylases (HDACs) have emerged as key participants. HDAC6, one of the members of this family of enzymes, has been shown to be involved in regulation of inflammatory and immune responses. In this study, to our knowledge we show for the first time that genetic or pharmacologic disruption of HDAC6 in macrophages and dendritic cells results in diminished production of the immunosuppressive cytokine IL-10 and induction of inflammatory APCs that effectively activate Ag-specific naive T cells and restore the responsiveness of anergic CD4+ T cells. Mechanistically, we have found that HDAC6 forms a previously unknown molecular complex with STAT3, association that was detected in both the cytoplasmic and nuclear compartments of the APC. By using HDAC6 recombinant mutants we identified the domain comprising amino acids 503-840 as being required for HDAC6 interaction with STAT3. Furthermore, by re-chromatin immunoprecipitation we confirmed that HDAC6 and STAT3 are both recruited to the same DNA sequence within the Il10 gene promoter. Of note, disruption of this complex by knocking down HDAC6 resulted in decreased STAT3 phosphorylation-but no changes in STAT3 acetylation-as well as diminished recruitment of STAT3 to the Il10 gene promoter region. The additional demonstration that a selective HDAC6 inhibitor disrupts this STAT3/IL-10 tolerogenic axis points to HDAC6 as a novel molecular target in APCs to overcome immune tolerance and tips the balance toward T cell immunity.
    The Journal of Immunology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Binding of C1q to target-bound IgG initiates complement-mediated lysis (CML) of pathogens, as well as of malignant or apoptotic cells, and thus constitutes an integral part of the innate immune system. Despite its prominent molecular flexibility and higher C1q binding affinity compared with human IgG1, IgG3 does not consistently promote superior CML. Hence the aim of this study was to investigate underlying molecular mechanisms of IgG1- and IgG3-driven complement activation using isotype variants of the therapeutic epidermal growth factor receptor (EGFR) Ab cetuximab. Both IgG1 and IgG3 Abs demonstrated similar EGFR binding and similar efficiency in Fab-mediated effector mechanisms. Whereas anti-EGFR-IgG1 did not promote CML of investigated target cells, anti-EGFR-IgG3 triggered significant CML of some, but not all tested cell lines. CML triggered by anti-EGFR-IgG3 negatively correlated with expression levels of the membrane-bound complement regulatory proteins CD55 and CD59, but not CD46. Notably, anti-EGFR-IgG3 promoted strong C1q and C3b, but relatively low C4b and C5b-9 deposition on analyzed cell lines. Furthermore, anti-EGFR-IgG3 triggered C4a release on all cells but failed to induce C3a and C5a release on CD55/CD59 highly expressing cells. RNA interference-induced knockdown or overexpression of membrane-bound complement regulatory proteins revealed CD55 expression to be a pivotal determinant of anti-EGFR-IgG3-triggered CML and to force a switch from classical complement pathway activation to C1q-dependent alternative pathway amplification. Together, these data suggest human anti-EGFR-IgG3, although highly reactive with C1q, to weakly promote assembly of the classical C3 convertase that is further suppressed in the presence of CD55, forcing human IgG3 to act mainly through the alternative pathway.
    The Journal of Immunology 06/2014; 193(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mouse MHC class Ib gene H2-T11 is 95% identical at the DNA level to H2-T23, which encodes Qa-1, one of the most studied MHC class Ib molecules. H2-T11 mRNA was observed to be expressed widely in tissues of C57BL/6 mice, with the highest levels in thymus. To circumvent the availability of a specific mAb, cells were transduced with cDNA encoding T11 with a substituted α3 domain. Hybrid T11D3 protein was expressed at high levels similar to control T23D3 molecules on the surface of both TAP(+) and TAP(-) cells. Soluble T11D3 was generated by folding in vitro with Qa-1 determinant modifier, the dominant peptide presented by Qa-1. The circular dichroism spectrum of this protein was similar to that of other MHC class I molecules, and it was observed to bind labeled Qa-1 determinant modifier peptide with rapid kinetics. By contrast to the Qa-1 control, T11 tetramers did not react with cells expressing CD94/NKG2A, supporting the conclusion that T11 cannot replace Qa-1 as a ligand for NK cell inhibitory receptors. T11 also failed to substitute for Qa-1 in the presentation of insulin to a Qa-1-restricted T cell hybridoma. Despite divergent function, T11 was observed to share peptide-loading specificity with Qa-1. Direct analysis by tandem mass spectrometry of peptides eluted from T11D3 and T23D3 isolated from Hela cells demonstrated a diversity of peptides with a clear motif that was shared between the two molecules. Thus, T11 is a paralog of T23 encoding an MHC class Ib molecule that shares peptide-binding specificity with Qa-1 but differs in function.
    The Journal of Immunology 06/2014; 193(3):1427.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immune-deficient mice, reconstituted with human stem cells, have been used to analyze human immune responses in vivo. Although they have been used to study immune responses to xenografts, allografts, and pathogens, there have not been models of autoimmune disease in which the mechanisms of the pathologic process can be analyzed. We have found that reconstituted "humanized" mice treated with anti-CTLA-4 Ab (ipilimumab) develop autoimmune disease characterized by hepatitis, adrenalitis, sialitis, anti-nuclear Abs, and weight loss. Induction of autoimmunity involved activation of T cells and cytokine production, and increased infiltration of APCs. When anti-CTLA-4 mAb-treated mice were cotreated with anti-CD3 mAb (teplizumab), hepatitis and anti-nuclear Abs were no longer seen and weight loss did not occur. The anti-CD3 blocked proliferation and activation of T cells, release of IFN-γ and TNF, macrophage infiltration, and release of IP-10 that was induced with anti-CTLA-4 mAb. We also found increased levels of T regulatory cells (CD25+CD127-) in the spleen and mesenteric lymph nodes in the mice treated with both Abs and greater constitutive phosphorylation of STAT5 in T regulatory cells in spleen cells compared with mice treated with anti-CTLA-4 mAb alone. We describe a model of human autoimmune disease in vivo. Humanized mice may be useful for understanding the mechanisms of biologics that are used in patients. Hepatitis, lymphadenopathy, and other inflammatory sequelae are adverse effects of ipilimumab treatment in humans, and this study may provide insights into this pathogenesis and the effects of immunologics on autoimmunity.
    The Journal of Immunology 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic lupus erythematosus (SLE) is a human chronic inflammatory disease generated and maintained throughout life by autoreactive T and B cells. Class I phosphoinositide 3-kinases (PI3K) are heterodimers composed of a regulatory and a catalytic subunit that catalyze phosphoinositide-3,4,5-P3 formation and regulate cell survival, migration, and division. Activity of the PI3Kδ isoform is enhanced in human SLE patient PBLs. In this study, we analyzed the effect of inhibiting PI3Kδ in MRL/lpr mice, a model of human SLE. We found that PI3Kδ inhibition ameliorated lupus progression. Treatment of these mice with a PI3Kδ inhibitor reduced the excessive numbers of CD4(+) effector/memory cells and B cells. In addition, this treatment reduced serum TNF-α levels and the number of macrophages infiltrating the kidney. Expression of inactive PI3Kδ, but not deletion of the other hematopoietic isoform PI3Kγ, reduced the ability of macrophages to cross the basement membrane, a process required to infiltrate the kidney, explaining MRL/lpr mice improvement by pharmacologic inhibition of PI3Kδ. The observations that p110δ inhibitor prolonged mouse life span, reduced disease symptoms, and showed no obvious secondary effects indicates that PI3Kδ is a promising target for SLE.
    The Journal of Immunology 06/2014; 193(2):544-54.
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD40L, a key regulator of the immune system, was studied as both a targeting ligand and a molecular adjuvant in nucleoprotein (NP)-based host defense against influenza in mouse models with different genetic backgrounds. Adenoviral vectors secreting NP-CD40L fusion protein (denoted as rAd-SNP40L) afforded full protection of immunocompetent and immunocompromised mice (CD40L-/- and CD4-/-) against lethal influenza infection. Mechanistically, rAd-SNP40L preferentially induced early and persistent B cell germinal center formation, and accelerated Ig isotype-switching and Th1-skewed, NP-specific Ab response. Moreover, it drastically augmented primary and memory NP-specific CTL activity and polyfunctional CD8+ T cells. The markedly enhanced nonneutralizing Abs and CTLs significantly reduced viral burdens in the lungs of mice upon lethal virus challenge. Data generated from CD40L-/- and CD4-/- mice revealed that the protection was indeed CD40L mediated but CD4+ T cell independent, demonstrating the viability of the fusion Ags in protecting immunodeficient hosts. Notably, a single dose of rAd-SNP40L completely protected mice from lethal viral challenge 4 mo after immunization, representing the first report, to our knowledge, on NP in conjunction with a molecular adjuvant inducing a robust and long-lasting memory immune response against influenza. This platform is characterized by an increased in vivo load of CD40-targeted Ag upon the secretion of the fusion protein from adenovirus-infected cells and may represent a promising strategy to enhance the breadth, durability, and potency of Ag-specific immune responses.
    The Journal of Immunology 06/2014;