Biochemistry and Molecular Biology Education (Biochem Mol Biol Educ )

Publisher: International Union of Biochemistry and Molecular Biology, John Wiley & Sons

Description

Title discontinued as of 2002. Formerly known as Biochemical Education

  • Impact factor
    0.70
  • 5-year impact
    0.59
  • Cited half-life
    6.10
  • Immediacy index
    0.03
  • Eigenfactor
    0.00
  • Article influence
    0.22
  • Website
    Biochemistry and Molecular Biology Education website
  • Other titles
    Biochemistry and molecular biology education (Online), Biochemistry and molecular biology education, BAMBEd
  • ISSN
    1539-3429
  • OCLC
    45409187
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

John Wiley & Sons

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • See Wiley-Blackwell entry for articles after February 2007
    • On personal web site or secure external website at authors institution
    • Not allowed on institutional repository
    • JASIST authors may deposit in an institutional repository
    • Non-commercial
    • Pre-print must be accompanied with set phrase (see individual journal copyright transfer agreements)
    • Published source must be acknowledged with set phrase (see individual journal copyright transfer agreements)
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'John Wiley and Sons' is an imprint of 'Wiley-Blackwell'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: An interactive chart of energy metabolism with didactic function, complementary to the already existing metabolic maps, located at the URL www.metpath.teithe.gr is being presented. The chart illustrates the major catabolic and biosynthetic pathways of glucose, fatty acids, and aminoacids, individually as well as in an integrated view. For every metabolite and reaction an information sheet may be presented at the side of the map as fancybox, containing chemical structural formulae, an external link to the KEGG database and links that lead to the reactions at which the produced metabolites may participate as reactants. The latter allows the user to navigate through metabolic reactions following a route similar to the metabolic flow of substances, while keeping track of the occurring chemical transformations. Simultaneously, users may observe how they move across the metabolic map, possibly along different pathways, thus enhancing the user's integrated perception of metabolism. The site has already been introduced in biochemistry lectures and the students evaluated it. Most students were helped a lot or more to understand individual pathways as well as their interconnections and they also found it pleasant and easy to navigate. The vast majority of the students considered its use in the classroom desired. The chart currently may be displayed in English and in Greek while more languages can be integrated in the future. The authors' view, in accordance to the users' perception, is that the presented site may offer biochemistry tutors and students a useful teaching aid. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 09/2014;
  • Biochemistry and Molecular Biology Education 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA, deletion mutants, expression plasmid, transfection, RNA polymerase II, promoter, Shine-Dalgarno sequence, polyadenylation element, affinity chromatography, Northern blotting, immunoprecipitation, sodium dodecylsulfate, autoradiography, tandem repeats
    Biochemistry and Molecular Biology Education 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the growing incidence of diabetes in developed nations, there is a compelling case to be made for teaching graduate students more deeply about mechanisms underlying this disease. Diabetes is associated with enhanced oxidative stress and protein glycation via the covalent binding of glucose molecules. Albumin represents the major plasmatic protein and undergoes enhanced glycoxidative modifications in diabetic condition. La Réunion Island, a French department located in the Indian Ocean exhibit a growing incidence of diabetes. At the University of La Réunion, our research group named GEICO (Groupe d'Etude sur l'Inflammation Chronique et l'Obésité) participated to foster research and training in diabetes context and focuses on the impact of glycated albumin mediated oxidative stress on cell physiopathology. A laboratory course was designed by our group to introduce graduate students to cutting edge techniques in redox biology while providing insights into scientific processes and methods. This two weeks research laboratory training took place at CYROI, a local biotechnology center that provides advanced facilities for research, business, and education. Using histochemistry, molecular biology, biochemical techniques, student investigated oxidative damages in liver from leptin receptor deficient diabetic mice compared to control littermates. In addition, they used an in vitro model by assaying oxidative impact of glycated albumin on hepatoma carcinoma HepG2 cells. This article gives an overview of the organization and protocol used by the students during their two weeks training in the laboratory. Therefore, it may be helpful for teaching graduate students techniques used in research laboratory working on redox biology. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The critical need for enhancing influenza pandemic preparedness in many developing nations has led the World Health Organization (WHO) and the Biomedical Advanced Research and Development Authority (BARDA), part of the U.S. Department of Health and Human Services (HHS), to develop an international influenza vaccine capacity-building program. Among the critical limitations faced by many of these nations is lack of access to training programs for staff supporting operations within vaccine production facilities. With support from BARDA, the Biomanufacturing Training and Education Center (BTEC) at North Carolina State University has addressed this need for training by developing and delivering a comprehensive training program, consisting of three courses: Fundamentals of cGMP Influenza Vaccine Manufacturing, Advanced Upstream Processes for Influenza Vaccine Manufacturing, and Advanced Downstream Processes for Influenza Vaccine Manufacturing. The courses cover process design, transfer, and execution at manufacturing scale, quality systems, and regulations covering both manufacturing and approval of pandemic vaccines. The Fundamentals course focuses on the concepts, equipment, applicable regulations, and procedures commonly used to produce influenza vaccine. The two Advanced courses focus on process design, scale up, validation, and new technologies likely to improve efficiency of vaccine production. All three courses rely on a combination of classroom instruction and hands-on training in BTEC's various laboratories. Each course stands alone, and participants may take one or more of the three courses. Overall participant satisfaction with the courses has been high, and follow-up surveys show that participants actively transferred the knowledge they gained to the workplace. Future plans call for BTEC to continue offering the three courses and to create an online version of several modules of the Fundamentals course. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically detect peroxidase activity and furthermore, to analyze the total protein profile. After the assay, students may estimate the apparent molecular mass of the enzyme and discuss its structure. After the 4-h experiment, students gain knowledge concerning biological sample preparation, gel preparation, electrophoresis, and the importance of specific staining procedures for the detection of enzymatic activity. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 07/2014;
  • Biochemistry and Molecular Biology Education 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A laboratory exercise was designed to illustrate how physical stimuli such as temperature and light are sensed and processed by bacteria to elaborate adaptive responses. In particular, we use the well-characterized Des pathway of Bacillus subtilis to show that temperature modulates gene expression, resulting ultimately in modification of the levels of unsaturated fatty acids required to maintain proper membrane fluidity at different temperatures. In addition, we adapt recent findings concerning the modulation by light of traits related to virulence such as motility and biofilm formation in the chemotropic bacterium Acinetobacter baumannii. Beyond the theoretical background that this activity provides regarding sensing of environmental stimuli, the experimental setup includes approaches derived from classic genetics, microbiology, and biochemistry. The incorporation of these kind of teaching and training activities in middle-advanced Microbiology or Bacterial Genetics courses promotes acquisition of general and specific techniques and improves student's comprehension of scientific literature and research. © 2014 by The International Union of Biochemistry and Molecular Biology, 42(4):305–322, 2014.
    Biochemistry and Molecular Biology Education 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flow cytometry and enzyme-linked immunosorbent assay (ELISA) are commonly used techniques associated with clinical and research applications within the immunology and medical fields. The use of these techniques is becoming increasingly valuable in many life science and engineering disciplines as well. Herein, we report the development and evaluation of a novel half-semester course that focused on introducing undergraduate and graduate students to advance conceptual and technical skills associated with flow cytometry and ELISA, with emphasis on applications, experimental design, and data analysis. This course was offered in the North Carolina State University Biotechnology Program over three semesters and consisted of weekly lectures and laboratories. Students performed and/or analyzed flow cytometry and ELISA in three separate laboratory exercises: (1) identification of transgenic zebrafish hematopoietic cells, (2) analysis of transfection efficiency, and (3) analysis of cytokine production upon lipopolysaccharide stimulation. Student learning outcomes were achieved as demonstrated by multiple means of assessment, including three laboratory reports, a data analysis laboratory practicum, and a cumulative final exam. Further, anonymous student self-assessment revealed increased student confidence in the knowledge and skill sets defined in the learning outcomes. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scientific writing is a demanding task and many students need more time than expected to finish their research articles. To speed up the process, we highlight some tools, strategies as well as writing guides. We recommend starting early in the research process with writing and to prepare research articles, not after but in parallel to the lab or field work. We suggest considering scientific writing as a team enterprise, which needs proper organization and regular feedback. In addition, it is helpful to select potential target journals early and to consider not only scope and reputation, but also decision times and rejection rates. Before submission, instructions to authors and writing guides should be considered, and drafts should be extensively revised. Later in the process editor's and reviewer's comments should be followed. Our tips and tools help students and advisors to structure the writing and publishing process, thereby stimulating them to develop their own strategies to success. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the protein sequence. With minimal direction from the instructor on how the students should complete the assignment, the students fared remarkably well in this task, with over half the class able to reconstruct the original sequence with over 77% sequence identity, and with structures whose median ranked in the 91st percentile of all structures of comparable resolution in terms of structure quality. Fourteen percent of the students' structures produced Molprobity steric clash validation scores even better than that of the original structure, suggesting that multiple students achieved an improvement in the overall structure quality compared to the published structure. Students were able to delineate limiting case chemical environments, such as charged interactions or complete solvent exposure, but were less able to distinguish finer details of hydrogen bonding or hydrophobicity. Our results prompt several questions: why were students able to perform so well in their structural validation scores? How were some students able to outperform the 88% sequence identity mark that would constitute a perfect score, given the level of degenerate density or surface residues with poor density? And how can the methodology used by the best students inform the practices of professional X-ray crystallographers? © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In situ hybridization is a widely used technique for studying gene expression. Here, we describe two experiments addressed to postgraduate genetics students in which the effect of transcription factors on gene expression is analyzed in Drosophila embryos of different genotypes by whole-mount in situ hybridization. In one of the experiments, students analyzed the repressive effect of Snail over rhomboid expression using reporter lines containing different constructs of the rhomboid neuroectodermal enhancer fused to the lacZ gene. In the second experiment, the epistatic relationship between the cabut and decapentaplegic genes was analyzed. These simple experiments allowed students to (1) understand the role of transcription factors and cis-regulatory elements over gene expression regulation and (2) practice a widespread laboratory technique, in situ hybridization with nonradioactive labeled probes, to detect gene expression patterns. These experiments required 12 hr and were organized into four daily sessions that included the discussion of the results with students. Examples of the results obtained and their relevance are shown and discussed herein. The methods described in these laboratory exercises can be easily adapted to model organisms other than Drosophila. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for the production of 3-D interactive images of protein structures that can be manipulated in real time through the use of augmented reality software. Users first see a real-time image of themselves using the computer's camera, then, when they hold up a trigger image, a model of a molecule appears automatically in the video. This model rotates and translates in space in response to movements of the trigger card. The system described has been optimized to allow customization for the display of user-selected structures to create engaging, educational visualizations to explore 3-D structures. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The increasing availability of concept inventories and other assessment tools in the molecular life sciences provides instructors with myriad avenues to probe student understanding. For example, although molecular visualization is central to the study of biochemistry, a growing body of evidence suggests that students have substantial limitations in their ability to recognize and interpret basic features of biological macromolecules. In this study, a pre/posttest administered to students at diverse institutions nationwide revealed a robust incorrect idea about the location of the amino acid side chains in the protein α-helix structure. Because this incorrect idea was present even after a semester of biochemistry instruction at a range of institutions, an intervention was necessary. A community of expert biochemistry instructors collaborated to design two active learning classroom activities that systematically examine α-helix structure and function. Several participating faculty used one or both of the activities in their classrooms and some improvement of student understanding of this concept was observed. This study provides a model of how a community of instructors can work together using assessment data to inform targeted changes in instruction with the goal of improving student understanding of fundamental concepts. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 06/2014; 42(3):213-223.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate that student engagement with PeerWise, an online tool that allows students to author and answer multiple-choice questions (MCQs), is associated with enhanced academic performance across diverse assessment types on a second year Genetics course. Benefits were consistent over three course deliveries, with differential benefits bestowed on groups of different prior ability. A rating scheme, to assess the educational quality of students' questions, is presented and demonstrates that our students are able intuitively to make such quality assessments, and that the process of authoring high quality questions alone does not explain the academic benefits. We further test the benefits of providing additional PeerWise support and conclude that PeerWise works efficiently with minimal intervention, and can be reliably assessed using automatically generated PeerWise scores. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 06/2014;
  • Biochemistry and Molecular Biology Education 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Terms to be familiar with before you start to solve the test: 3′- and 5′-ends of DNA fragments, plasmids, restriction endonucleases, agarose gel electrophoresis, linear and circular DNA, superhelical DNA, blunt and sticky ends, DNA ligase, nuclease, [γ-32P] ATP, and radioactive labeling. © 2014 by The International Union of Biochemistry and Molecular Biology, 42(3):270–273, 2014.
    Biochemistry and Molecular Biology Education 05/2014;
  • Biochemistry and Molecular Biology Education 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research productivity, doctoral mentoring practices (DMP), and doctoral research experiences (DRE) of mentees in programs in the non-West. Inspired by previous findings that early career productivity is a strong predictor of later productivity, we examine the research productivity of 210 molecular biology doctoral students in selected programs in Japan, Singapore, and Taiwan. Using principal component (PC) analysis, we derive two sets of PCs: one set from 15 DMP and another set from 16 DRE items. We model research productivity using Poisson and negative-binomial regression models with these sets as predictors. Our findings suggest a need to re-think extant practices and to allocate resources toward professional career development in training future scientists. We contend that doctoral science training must not only be an occasion for future scientists to learn scientific and technical skills, but it must also be the opportunity to experience, to acquire, and to hone research management skills. © 2014 by The International Union of Biochemistry and Molecular Biology, 2014.
    Biochemistry and Molecular Biology Education 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rationale for this mandatory, guided online e-journal exercise is to foster the ability of students to independently read medical and scientific literature in a critical manner and to integrate journal reading with their basic science knowledge. After a lecture on oxidative phosphorylation, students were assigned to read an article on brown adipose tissue published in New England Journal of Medicine and were guided to analyze the article by answering online questions. After two iterations, student surveys about the project, its key pedagogical features, and ways to improve it suggest that the students perceived these exercises as active learning, which is clinically relevant and built on their course material. Furthermore, students agreed that the e-journal project was useful for learning how to read an article, for reviewing the material learned in class, and for promoting evidence-based medicine. This online e-journal exercise models some aspects students will experience as future physicians, where it is essential to keep up with literature and extract relevant information on a tight physician's schedule. This study demonstrated the usefulness of guided e-journal exercises as a simple effective active teaching tool for preclinical medical students, which can also be used for prehealth undergraduate programs. © 2013 by The International Union of Biochemistry and Molecular Biology, 2013.
    Biochemistry and Molecular Biology Education 03/2014;

Related Journals