Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering

Description

With articles ranging from notes to completed studies, Toxic/Hazardous Substances & Environmental Engineering is a comprehensive journal that provides an international forum for the rapid publication of essential information - including the latest engineering innovations, effects of pollutants on health, control systems, laws, and projections pertinent to environmental problems whether in the air, water, or soil. This timely journal offers answers to serious contemporary environmental issues.

Impact factor 0.00

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence for the association of bisphenol A (BPA) with type II diabetes mellitus (T2DM) has been inconsistent in human studies. In-vitro and animal studies indicate that chlorinated BPA derivatives aggravate BPA health effects via higher estrogenic activity and alteration of membrane-initiating signaling pathways. We evaluated the association between urinary monochlorinated BPA (mono-ClBPA) concentrations and the incidence of T2DM. In our cross-sectional study, we identified 20 adult participants (≥18 yr) who reported having T2DM (doctor-diagnosed) and 131 adults with normal health. First morning void urine samples were analyzed for total BPA and mono-ClBPA. Detection limits of the analytical method were 95 ng L(-1) for BPA and 32 ng L(-1) for mono-ClBPA. Multivariable logistic regression analyses and additive Bayesian network modeling were performed. After adjusting for age, gender, BMI, urinary total BPA and other confounders, the odds of having T2DM was 3.29 times higher (95% confidence interval, CI: 1.10, 11.4; P < 0.05) per unit increase in log-transformed and creatinine-adjusted urinary mono-ClBPA levels (n = 151); this relation did not hold for total BPA. The globally optimum Bayesian model corroborated the results of the logistic regression by expressing mono-ClBPA in the pathway of T2DM, and not for total BPA. An age-matched sensitivity analysis confirmed the increase in OR of T2DM by 3.04 times (95% CI: 1.10, 11.0; P < 0.05) per unit increase in log-transformed and creatinine-adjusted urinary mono-ClBPA concentration (n = 68). The urinary monochlorinated BPA derivative was significantly associated with T2DM, whereas the parent compound (total BPA) was not. Caution should be applied in interpreting these findings, as this is the first study to report this association and the sample size of participants with T2DM is small. Additional research with a larger sample size coupled with relevant toxicological studies is warranted.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):243-259.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cryptosporidium is an extremely virulent microorganism; contamination of water works systems by Cryptosporidium oocysts is a serious issue in public health. However, a great deal of effort is required to detect oocysts in source water for drinking, because the oocysts have to be concentrated from a large volume of water before detection. In this study, the concentration of oocysts in oocyst-polluted artificial river water was examined by coagulation and foam separation. The oocysts concentrated in the foam water were purified using immunomagnetic separation and assessed using epifluorescence microscopy. When ferric coagulation was performed prior to foam separation, oocysts were effectively removed from the river water and concentrated in the foam within 10 min. The removal efficiency was greater than 96% at the optimum iron and casein concentrations of 5 mg-Fe L(-1) and 20 mg L(-1), respectively. Furthermore, the number of recovered oocysts in the solution obtained by the dissolution of the collected ferric flocs from foam water was the same as that obtained using the Japanese standard procedure for detection of Cryptosporidium in water using membrane filtration. This is a novel method of concentrating Cryptosporidium oocysts for detection in river water using a coagulation and foam separation combined with acid dissolution of ferric flocs; the method is easy to use, rapid, and efficient.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):311-316.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many air toxicants, and especially aldehydes, are generated by moxibustion, which means burning Artemisia argyi. Our goal was to investigate indoor-air aldehyde emissions in Chinese medicine clinics (CMCs) during moxibustion to further evaluate the potential health risks, including cancer risk and non-cancer risk, to the medical staff and adult patients. First, the indoor-air-quality in 60 public sites, including 15 CMCs, was investigated. Four CMCs with frequent use of moxibustion were selected from the 15 CMCs to gather the indoor airborne aldehydes in the waiting and therapy rooms. The mean values of formaldehyde and acetaldehyde in the CMCs' indoor air were 654 and 4230 μg m(-3), respectively, in the therapy rooms, and 155 and 850 μg m(-3), respectively, in the waiting rooms. The average lifetime cancer risks (Rs) and non-cancer risks (hazard quotients: HQs) of airborne formaldehyde and acetaldehyde among the CMC medical staff exceeded the acceptable criteria (R < 1.00 × 10(-3) and HQ < 1.00) for occupational workers. The patients' Rs and HQs were also slightly higher than the critical values (R = 1.00 × 10(-6) and HQ = 1.00). Our results indicate that airborne aldehydes pose a significant threat to the health of medical staff, and slightly affected the patients' health, during moxibustion in the CMCs.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):260-271.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using sodium fluoride as tracer, residence time distribution technique was employed to evaluate the hydraulic characteristics of a pilot-scale Internal-Loop Airlift Bio-particle (ILAB) bioreactor that was a novel system for ammonia removal from wastewater. The results showed that the flow pattern of ILAB reactor was close to completely mixed reactor under all the tested air flow rates and liquid flow rates (with average N of 1.88). The total dead zone (TDZ) was 32.43% with biological dead zone (BDZ) of 20.66% and hydraulic dead zone (HDZ) of 8.95%. At higher air flow rates, the flow pattern of reactor approached that of completely mixed reactor (N from 2.72 to 1.54), and the increase of air flow rate gave rise to the decrease of TDZ in the reactor (from 36.24% to 23.00%). Whereas at higher liquid flow rates, the flow pattern of ILAB reactor got away from that of completely mixed reactor (N from 1.51 to 1.72), and the increase of liquid flow rate yielded a rise of TDZ in the reactor (from 28.48% to 36.84%). The study highlighted that the effect of air flow rate on flow pattern and TDZ of the reactor was greater than that of liquid flow rate.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):332-339.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g., New York State Green Building Tax Credit (GBTC)) and certification programs (e.g., Leadership in Energy & Environmental Design (LEED)) require indoor air quality measures and compliance with allowable maximum concentrations of common indoor air pollutants. It is not yet entirely clear whether compliance with these programs results in improved IAQ and ultimately human health. As a case in point, annual indoor air quality measurements were conducted in a residential green high-rise building for five consecutive years by an industrial hygiene contractor to comply with the building's GBTC requirements. The implementation of green design measures resulted in better IAQ compared to data in references of conventional homes for some parameters, but could not be confirmed for others. Relative humidity and carbon dioxide were satisfactory according to existing standards. Formaldehyde levels during four out of five years were below the most recent proposed exposure limits found in the literature. To some degree, particulate matter (PM) levels were lower than that in studies from conventional residential buildings. Concentrations of Volatile Organic Compounds (VOCs) with known permissible exposure limits were below levels known to cause chronic health effects, but their concentrations were inconclusive regarding cancer health effects due to relatively high detection limits. Although measured indoor air parameters met all IAQ maximum allowable concentrations in GBTC and applicable LEED requirements at the time of sampling, we argue that these measurements were not sufficient to assess IAQ comprehensively because more sensitive sampling/analytical methods for PM and VOCs are needed; in addition, there is a need for a formal process to ensure rigor and adequacy of sampling and analysis methods. Also, we suggest that a comprehensive IAQ assessment should include mixed mode thermal comfort models, semi-volatile organic compounds, assessment of new chemicals, and permissible exposure levels of many known indoor VOCs and bioaerosols. Plus, the relationship between energy consumption and IAQ, and tenant education on health effects of indoor pollutants and their sources may need more attention in IAQ investigations in green buildings.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):225-242.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photolytic degradation of the non-degradable pharmaceuticals sulfamethoxazole (SMX) and trimethoprim (TMP) in an aqueous solution was investigated using three kinds of low-pressure mercury lamp UV-A (352 nm), UV-C (254 nm), and vacuum-UV (VUV, 185 nm and 254 nm). The degradation rates were highly dependent on the target compounds as well as the UV sources. No degradation of the target compounds was observed using UV-A treatment, because there was no overlap between the UV-A emission spectrum and absorption spectrum of the target compounds. On the other hand, UVC and VUV revealed higher reactivity. The results also indicated that SMX had a greater potential to react photochemically than TMP. Among the UV sources, VUV was the most effective process for the degradation of target compounds. Furthermore, the addition of oxidants such as hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8) to the reaction system improved the overall degradation rate significantly.The experimental results for the VUV-irradiated samples with the addition of methanol as a hydroxyl radical scavenger revealed that hydroxyl radicals contribute significantly to the elimination of the target compound. Overall, the degradation rate of the target compounds was in the order: VUV = UV-C > UV-A for sulfamethoxazole and VUV/H2O2 > VUV/ Na2S2O8 > VUV >UV-C >UV-A for trimethoprim.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):292-300.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electrochemical oxidation of methyl orange (Sodium 4-[(4-dimethylamino) phenyldiazenyl] benzenesulfonate) with lead dioxide coated on mild steel was modelled using response surface methodology (RSM) to analyze the influence of pH, NaCl dose and current on color and chemical oxygen demand (COD) removal. Higher current, acidic pH and 0.8-1.2 g L(-1) NaCl dose had an enhancing effect on the removal efficiencies. Interaction effect of the variables highlights the action of (•)OH and HOCl in the oxidation of methyl orange, where HOCl has effect at lower current range. More than 90% COD removal efficiency and ∼100% color removal efficiency was obtained in 5 h at optimum conditions for an initial concentration of 50 mg L(-1). High performance liquid chromatography-mass spectroscopy (HPLC-MS) analysis carried out to identify degradation intermediates revealed the absence of chlorinated intermediates, which was further verified with Fourier transform infrared spectroscopy (FTIR) analysis. The postulated pathway of degradation indicated breakdown through dealkylation, deamination, desulfonation and cleavage of an azo bond and benzene ring. The degradation of methyl orange to smaller compounds was also confirmed by Ion Chromatography (IC). Cytotoxicity analysis on HaCaT cells revealed the intermediates to be more cytotoxic than the dye, possibly due to the aromatic amines and diazines formed during the degradation process.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):301-310.
  • [Show abstract] [Hide abstract]
    ABSTRACT: An ASM3-based model was implemented in the numerical software MATHEMATICA where sensitivity analyses and simulations of a membrane bioreactor (MBR) system were carried out. These results were compared with those obtained using the commercial simulator WEST. Predicted values did not show significant variations between both software and simulations showed that the most influential operational conditions were influent flow rate and concentrations and bioreactor volumes. On the other hand, sensitivity analyses were carried out with both software programs for the same five outputs: COD, ammonium and nitrate concentrations in the effluent, total suspended solids concentration and oxygen uptake rate in the aerobic bioreactor. Similar results were in general obtained in both cases and according to these analyses, the most significant inputs over the model predictions were growth and storage heterotrophic biomass yields and decay coefficient. Other parameters related to the hydrolysis process or to the autotrophic biomass also significantly influenced model outputs.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 02/2015; 50(3):317-324.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(2):144-50.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Continuous aerobic biodegradation of 4-NP, 3-NP and 2-NP mixture was monitored in a packed bed reactor in simulated wastewater with a mixed microbial culture immobilized on expanded slate. Substrate loading was varied by increasing the concentration of one isomer while keeping the other two at constant levels, all at a constant residence time of 60 min. At large concentrations, all of the individual NP isomers suppressed the degradation rates of the other isomers at steady state; however, the observed patterns and threshold concentrations were different for all three substrates. As a result, conditions were determined for stable and efficient removal of NP mixtures. Changes of the biofilm composition during a long-term operation were identified.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(2):109-18.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work presents the application of Fenton's reagent process combined with anaerobic digestion to treat an olive mill wastewater (OMW). Firstly, OMW was pre-treated by chemical oxidation in a batch reactor with Fenton's reagent, using a fixed H2O2/COD ratio of 0.20, pH = 3.5 and a H2O2/Fe2+ molar ratio of 15:1. This advanced oxidation treatment allowed reaching reductions of 17.6 and 82.5% of chemical oxygen demand (COD) and total polyphenols (TP), respectively. Secondly, OMW treatment by anaerobic digestion was performed using previously adapted microorganisms immobilized in Sepiolite. These biological tests were carried out varying the substrate concentration supplied to the reactor and COD conversions from 52 to 74% were obtained. Afterwards, Fenton's reagent followed by anaerobic digestion was applied to OMW treatment. This combined process presented a significant improvement on organic load removal, reaching COD degradations from 64 to 88%. Beyond the pollutant load removal, it was also monitored the yield of methane generated throughout anaerobic experiments. The methane produced ranged from 281 cm3 to 322 cm3 of CH4/g COD removed. Additionally, a methane generation kinetic study was performed using the Monod Model. The application of this model allowed observing a kinetic constant increase of the combined process (kFN = 0.036 h−1) when compared to the single anaerobic process (kF = 0.017 h−1).
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(2):193-200.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the treatment in the constructed Wuluo wetland, Taiwan, of 13 veterinary antibiotics, including five classes (tetracyclines, sulfonimides, chloramphenicol, fluoroquinolone, and dyes), five alkylphenolic compounds (nonylphenol di-ethoxylates [NP2EO], nonylphenol mono-ethoxylates [NP1EO], nonylphenol [NP], octylphenol [OP], and bisphenol A [BPA]), and three estrogens (17β-estradiol [E2], estriol [E3], and 17α-ethynylestradiol [EE2]). The veterinary antibiotics oxytetracycline (OTC), ciprofloxacin (CIP), chloramphenicol (CAP), oxolinic acid (OXO), sulfamonomethoxine (SMM), and sulfadimethoxine (SDM) were detected in 7.1-96.4% of samples with concentrations varying widely from not detected to 552 ng/L. Removal efficiencies within different units of the wetland system exceeded 87% for OTC, CAP, SMM, and SDM, excluding those for IP and OXO, which were 72.1% and 43%, respectively. The other seven antibiotics (tetracycline [TC], enrofloxacin [ENR], chlortetracycline [CTC], sulfamerazine [SMR], sulfamethazine [SMZ], malachite green [MG], and leucomalachite green [LMG]) were all below detection limits in all samples. Additionally, detection rates were as follows: NP1EO, 70.0%; NP2EO, 70.0%; 4-n-NP, 72.9%; 4-OP, 50.0%; BPA, 81.3%; E2, 52.1%; E3, 57.1%; and EE2, 31.3%. Concentrations of the alkylphenolic compounds were as follows: NP1EO, ND-1092.7; NP2EO, ND-643.7; 4-n-NP, ND-6812.3; 4-OP, ND-10400.1; and BPA, ND-1733 ng/L. Natural and synthetic estrogens E2, E3, and EE2 in samples were found in the ranges of ND-907.4, ND-749.5, and ND-226.0 ng/L, respectively. Analytical results show that with the exception of EE2 throughout the wetland system, target compounds were largely removed.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(2):151-60.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the current study, nano-particulated drugs-Amphotericin-B, Ketoconazole and Thymoquinone (an active ingredient of Nigella sativa)-were prepared using the ball milling technique, and their particle sizes were examined by transmission electron microscopy (TEM) and using a particle size analyzer. The grain sizes of the prepared compounds were found in between 5 to 20 nm, and exhibited quasi-spherical morphology. The antifungal activity of each nano-particulated drug was investigated in vitro against Candida albicans yeasts and Candida biofilm, and compared with their micro-structured conventional forms. Nano-sized drugs were found to be two to four times more effective in disinfecting both the Candida yeasts and Candida biofilm. The study is a first of its kind as nano-forms of drugs have not been studied against Candida and Candida biofilm before. Further investigations are required for the determination of the clinical significance of the nano-formulation of antifungal substances.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(2):119-24.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the abundance and sequences of the amoA gene in ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were defined in three wastewater treatment plants using activated sludge with biological nitrogen removal in different countries: Thailand, United States of America (USA), and Japan. Quantitative real-time polymerase chain reaction (PCR) and PCR coupled with denaturing gradient gel electrophoresis were used to find the comparative abundance and identity of AOB and AOA. The conditions at the Phuket WWTP in Thailand promoted the dominance of AOA amoA genes over AOB amoA genes, while conditions at the WWTPs in Japan and USA promoted growth of AOB. Three parameters that may have contributed to the AOA dominance in Phuket were longer SRT, higher temperature, and higher pH. The Phuket WWTP is a unique system that can be used to better understand the conditions that promote AOA growth and dominance over AOB. In addition, analysis of operational data in conjunction with AOA and AOB community structure from the Phuket WWTP may elucidate advantages of AOA in meeting stricter treatment standards.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(2):169-75.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface sediments of Dongting Lake wetland were collected from ten sites to investigate variation trend, risk and sources of heavy metal distribution in dry seasons of 2011∼2013. The three-year mean concentrations (mg/kg) of Cr, Cu, Pb, Cd, Hg and As were 91.33, 36.27, 54.82, 4.39, 0.19 and 25.67, respectively, which were all higher than the corresponding background values. Sediment quality guidelines (SQGs) and Geo-accumulation index (Igeo) were used for the assessment of pollution level of heavy metals. The pollution risk of Cd, Hg and As were great and that of Cr needed urgent attention because of its obvious increase. Pollution load index (PLI) and geographic information system (GIS) methods were conducted to assess spatial and temporal variation of heavy metal contamination. Results confirmed an increased contamination contribution inflow from Xiang River. Multivariate statistical analyses were applied to identify contribution sources of heavy metal, which showed anthropogenic origin mainly from mining, smelting, chemical industry and agricultural activity.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(1):100-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m(-2) provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L(-1) compared to 2.906 mg·L(-1) without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(1):49-59.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, serious scientific and technological attention is paid to creation of alternative energy sources, including biofuels. The assessment of the quality of the biofuels produced and of the raw materials needed for the production technology is an important scientific challenge. One of the major sources for biodiesel production is plant oils material (sunflower, rapeseed, palm, soya etc.). Since plants are complex system from the biota it is not easy to find specific chemical components responsible for their ability to serve as biodiesels. The characterization and classification of plant sources as biofuel material could be reliably estimated only by the use of multivariate statistical approaches (chemometrics). The chemometric expertise makes it possible not only to classify different biofuel sources into similarity classes but also to predict the membership of unknown by origin chemically analyzed samples to already existing classes. The present study deals with the prediction of the class membership of several unknown by origin samples, which are included in a large data set with FAME profiles of biodiesel plant sources. Using a data set from chromatographic analysis of fatty acid methyl esters profiles (FAME) of different plant biodiesel sources and applying the chemometric technique know as partial least squares-discriminant analysis (PLS - DA) a pattern recognition procedure is developed to: I. Model classes of similarity of biodiesel plant sources using their FAME profiles not taking into account the samples with unknown origin; II. Classify correctly the samples with unknown origin to the previously defined classes of biodiesel sources (palm oil, soybean oil, peanut oil, rapeseed oil, sunflower oil and maize oil). The prediction is successfully achieved for all samples with previously unknown origin. This pattern recognition approach is applied for the first time in the field of biodiesel classification and modeling tasks.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(1):72-80.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 01/2015; 50(1):81-9.