Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering

Publisher: Taylor & Francis

Journal description

With articles ranging from notes to completed studies, Toxic/Hazardous Substances & Environmental Engineering is a comprehensive journal that provides an international forum for the rapid publication of essential information - including the latest engineering innovations, effects of pollutants on health, control systems, laws, and projections pertinent to environmental problems whether in the air, water, or soil. This timely journal offers answers to serious contemporary environmental issues.

Current impact factor: 1.16

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.164
2013 Impact Factor 1.135
2012 Impact Factor 1.252
2011 Impact Factor 1.19
2010 Impact Factor 1.107
2009 Impact Factor 1.363
2008 Impact Factor 1.002
2007 Impact Factor 0.967
1996 Impact Factor 0.58
1995 Impact Factor 0.615
1994 Impact Factor 0.467
1993 Impact Factor 0.616
1992 Impact Factor 0.354

Impact factor over time

Impact factor

Additional details

5-year impact 1.24
Cited half-life 7.20
Immediacy index 0.28
Eigenfactor 0.01
Article influence 0.30
Website Journal of Environmental Science and Health - Part A: Toxic/Hazardous Substances & Environmental Engineering website
Other titles Journal of environmental science and health., Toxic hazardous substances and environmental engineering, Toxic/hazardous substances & environmental engineering
ISSN 1532-4117
OCLC 50757651
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • On author's personal website or departmental website immediately
    • On institutional repository or subject-based repository after either 12 months embargo
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • The publisher will deposit in on behalf of authors to a designated institutional repository including PubMed Central, where a deposit agreement exists with the repository
    • STM: Science, Technology and Medicine
    • Publisher last contacted on 25/03/2014
    • This policy is an exception to the default policies of 'Taylor & Francis'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence, distribution and main removal pathway of seven widely used organophosphate esters (OPs) in a municipal wastewater treatment plant (WWTP) located in the Pearl River Delta were investigated. Their daily discharge load into the Pearl River via effluent was also estimated. All the target analytes were detected in wastewater, suspended particle and dewatered sludge, with tri-n-butyl phosphate (TBP) and tris(2-butoxyethyl) phosphate (TBEP) as the main components. The total concentrations of TBP and TBEP were 21271.8 ng L(-1) and 4349.4 ng L(-1), 3105.1 ng L(-1) and 494.5 ng L(-1) in influent wastewater and final effluent, respectively. These results indicated that non-chlorinated OPs were removed efficiently in the WWTP, while chlorinated OPs passed through the WWTP unchanged due to their resistance to current wastewater treatment technology. Approximate 91.4 g of non-chlorinated OPs and 23.4 g of chlorinated OPs per day were discharged into the Pearl River via effluent, 2.4 g of non-chlorinated OPs and 0.6 g of chlorinated OPs entered the environment following sludge disposal.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1291-1297. DOI:10.1080/10934529.2015.1055158
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was undertaken to investigate the effectiveness of the hybrid adsorbent, which was synthesized from coal fly ash and was composed of lanthanum hydroxide and zeolite (La-ZFA), for phosphate removal from water. Long-term repeated adsorption tests for 30 days showed that the maximum removal capacity of the material reached 66.09 mg P/g. The fractionation of adsorbed phosphorus indicated that phosphate immobilized by La-ZFA was quite irreversible and was dominated by HCl-P fraction. It was suggested that the immobilization of phosphate was mainly attributed to lanthanum hydroxide and was slightly influenced by coexistence of other anions (Cl(-), NO3(-), SO4(2-), and HCO3(-)). At a La/P molar ratio between 1.5:1 and 2.0:1, a nearly complete removal (above 98%) of phosphate could be achieved. La-ZFA also exhibited great performance for removing phosphate from lake water (97.29%) as well as the effluent from wastewater treatment plant (97.86%), respectively. In addition, based on the results of the present study, it was believed that La-ZFA could be a potential material for phosphate removal in practical application.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1298-1305. DOI:10.1080/10934529.2015.1055159
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1230-1240. DOI:10.1080/10934529.2015.1055147
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to assess (1) levels of volatile organic compounds (VOCs) and particulate matter (PM) in a dental clinic in southern Taiwan and (2) dental care personnel's health risks associated with due to chronic exposure to VOCs. An automatic, continuous sampling system and a multi-gas monitor were employed to quantify the air pollutants, along with environmental comfort factors, including temperature, CO2, and relative humidity at six sampling sites in the clinic over eight days. Specific VOC compounds were identified and their concentrations were quantified. Both non-carcinogenic and carcinogenic VOC compounds were assessed based on the US Environmental Protection Agency's Principles of Health Risk Assessment in terms of whether those indoor air pollutants increased health risks for the full-time dental care professionals at the clinic. Increased levels of VOCs were recorded during business hours and exceeded limits recommended by the Taiwan Environmental Protection Agency. A total of 68 VOC compounds were identified in the study area. Methylene methacrylate (2.8 ppm) and acetone (0.176 ppm) were the only two non-carcinogenic compounds that posed increased risks for human health, yielding hazard indexes of 16.4 and 4.1, respectively. None of the carcinogenic compounds increased cancer risk. All detected PM10 levels ranged from 20 to 150 μg/m(3), which met the Taiwan EPA and international limits. The average PM10 level during business hours was significantly higher than that during non-business hours (P = 0.04). Improved ventilation capacity in the air conditioning system was recommended to reduce VOCs and PM levels.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1205-14. DOI:10.1080/10934529.2015.1055129
  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of carbon-bacteria complexes in activated carbon filtered water has posed a public health problem regarding the biological safety of drinking water. The application of combined process of ultraviolet radiation and nanostructure titanium dioxide (UV/TiO2) photocatalysis for the disinfection of carbon-bacteria complexes were assessed in this study. Results showed that a 1.07 Lg disinfection rate can be achieved using a UV dose of 20 mJ cm(-2), while the optimal UV intensity was 0.01 mW cm(-2). Particle sizes ≥8 μm decreased the disinfection efficiency, whereas variation in particle number in activated carbon-filtered water did not significantly affect the disinfection efficiency. Photoreactivation ratio was reduced from 12.07% to 1.69% when the UV dose was increased from 5 mJ cm(-2) to 20 mJ cm(-2). Laboratory and on-site pilot-scale experiments have demonstrated that UV/TiO2 photocatalytic disinfection technology is capable of controlling the risk posed by carbon-bacteria complexes and securing drinking water safety.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1274-1281. DOI:10.1080/10934529.2015.1055155
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1265-1273. DOI:10.1080/10934529.2015.1055152
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, bactericidal effects of 24 kHz ultrasound, ultraviolet (UV-C) irradiation, and titanium dioxide (TiO2) photocatalyst were studied on inactivation of Aeromonas hydrophila, an emerging pathogen listed on the US Environmental Protection Agency's (US EPA) candidate contaminant list. Metabolic activity (using the AlamarBlue dye) assays were performed to assess the residual activity of the microbial cells after the disinfection treatments along with culture-based methods. A faster inactivation rate of 1.52 log min(-1) and inactivation of 7.62 log10 was observed within 5 min of ultrasound exposure. Ultrasound treated cells repaired by 1.4 log10 in contrast to 5.3 log10 repair for UV-C treated cells. Ultrasound treatment significantly lowered the reactivation of Aeromonas hydrophila in comparison to UV-C- and UV-C-induced photocatalysis. Ultrasound appeared to be an effective means of inactivating Aeromonas hydrophila and could be used as a potential disinfection method for water and wastewater reuse.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1223-1229. DOI:10.1080/10934529.2015.1055135
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leaching tests of electrolytic manganese residue (EMR) indicated that high contents of soluble manganese and ammonia-nitrogen posed a high environmental risk. This work reports the results of simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese by air under calcium oxide assist. The ammonia-nitrogen stripping rate increased with the dosage of CaO, the air flow rate and the temperature of EMR slurry. Stripped ammonia-nitrogen was absorbed by a solution of sulfuric acid and formed soluble (NH4)2SO4 and (NH4)3H(SO4)3. The major parameters that effected soluble manganese precipitation were the dosage of added CaO and the slurry temperature. Considering these two aspects, the efficient operation conditions should be conducted with 8 wt.% added CaO, 60°C, 800 mL min(-1) air flow rate and 60-min reaction time. Under these conditions 99.99% of the soluble manganese was precipitated as Mn3O4, which was confirmed by XRD and SEM-EDS analyses. In addition, the stripping rate of ammonia-nitrogen was 99.73%. Leaching tests showed the leached toxic substances concentrations of the treated EMR met the integrated wastewater discharge standard of China (GB8978-1996).
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1282-1290. DOI:10.1080/10934529.2015.1055157
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to examine the accumulation and distribution of total mercury (Hg) in fruiting bodies of edible wild-grown mushroom Hazel Bolete Leccinum griseum (Quél.) Singer, collected from six spatially distantly distributed places across Poland and to assess the probable dietary intake of the element by consumers. Mercury content of fungal and soil samples were determined by cold-vapour atomic absorption spectroscopy (CV-AAS) with a direct sample thermal decomposition coupled with gold wool trap of Hg and its further desorption and quantitative measurement at the wavelength of 296 nm. The median values of Hg content in caps of L. griseum collected from less-contaminated places (< 0.10 mg Hg kg(-1) dry matter in upper 0-10 cm layer of soil substratum) were from 0.23 mg kg(-1) dm to 0.43 mg kg(-1) dm. And for more contaminated topsoil (0.15 mg Hg kg(-1) dry matter), the median in caps was about 1.5 mg kg(-1) dry matter. The mushroom L. griseum has potential to accumulate Hg in fruiting bodies, while quantities of this element noted in consignments of this species originating from the forests with typical background values of Hg in topsoil are low. In the light of the published value of PTWI for Hg consumption of fruiting bodies of L. griseus emerged in forests of Poland is without health risk for consumers. Information on total mercury and methylmercury in Fungi of the genus Leccinum is also described briefly.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 10/2015; 50(12):1259-64. DOI:10.1080/10934529.2015.1055151
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 09/2015; DOI:10.1080/10934529.2015.1079099
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 09/2015; DOI:10.1080/10934529.2015.1079102
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extended-spectrum β-lactamases (ESBLs) have the capability of hydrolyzing a variety of the newer β-lactam antibiotics, including the third-generation cephalosporins and monobactams known as a rapidly evolving group of ESBLs. The purpose of this study was to investigate the occurrence and fate of β-lactamase producing genes (CTX-M type 1, type2, CTX-M probe for all groups except CTX-M-1, and TEM, SHV, OXA) through wastewater treatment utilities. β-lactamase producing genes in influent, digested sludge, activated sludge, and disinfected effluent were monitored. The results showed that influent contained high level of all target genes, and all CTX-M types, SHV, and OXA gene decreased significantly in biological treatment process such as activated sludge process and anaerobic digestion, however, TEM type was not effectively eliminated. Possibly, host microbes of TEM could be most resistant in target genes or to some extent gene transfer occurred in wastewater treatment processes. All target genes were significantly reduced during disinfection. Consequently, wastewater treatment process apparently reduced host microbes carrying β-lactamase producing genes effectively, although they are selectively removed in biological processes. In addition, the significant reduction during disinfection was shown, although slightly differences of removal efficiency were observed in resistance.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 09/2015; 50(11):1160-1168. DOI:10.1080/10934529.2015.1047673
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, vinyl chloride (VC), the primary material for manufacturing polyvinyl chloride (PVC), is decomposed via catalytic oxidation (C-OX) using Pt/γ-Al2O3 catalyst. The effects of related major factors such as reaction temperature (T) and gas hourly space velocity on the conversion of VC (X) were examined. The values of T for achieving conversions of 50% and 90% are 504 and 580 K with C-OX, respectively, whereas those without Pt/γ-Al2O3 (i.e., thermal oxidation, T-OX) are 900 and 983 K, respectively, thus indicating that C-OX significantly reduces T for effective oxidation of VC to form CO2, HCl, and Cl2 when compared with T-OX. The mineralizations of carbon in VC to form CO2 are 75.5% and 38% for C-OX and T-OX, respectively, at 90% X. The conversions of chlorine atom in 1,2-dichloroenane (DCEA) to Cl in HCl and Cl2 are approximately 42% and 50.8% for C-OX and T-OX, respectively, at 90% X. These results indicate that the Pt/γ-Al2O3 catalyst exhibits remarkable performance for the mineralizations to form CO2 even though a proportion of chlorine atoms are adsorbed on the Pt surface. The Eley-Rideal model can be used to describe the experimental results, thus yielding activation energy and frequency factor values of 49.0 kJ mol(-1) and 1.77 × 10(6) s(-1), respectively. The obtained information and kinetic parameters are useful for the rational design and operation of C-OX process for the abatement of VC.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 09/2015; 50(11):1187-1193. DOI:10.1080/10934529.2015.1047678
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stable tricyclic structure of the cylindrospermopsin (CYN), a cynotoxin, has presented several challenges to water treatment facilities, as conventional treatment methods have a limited ability to remove it from water. This study examines the effectiveness of titanium dioxide (TiO2) in catalytic ozonation for degrading CYN. The chemical kinetics of the reactions of ozone (O3) and hydroxyl radicals (OH(•)) with CYN were determined. The results reveal that TiO2 significantly increases the rate of degradation of CYN by increasing the rate of production of hydroxyl radicals (OH(•)) by initiating the decomposition of O3 on the surface of the catalyst. At a pH of 7 with 1.0 mg L(-1) O3 and 500 mg L(-1) TiO2; the pseudo-first-order ozone decomposition rate constant (kD) increased from 3.04 × 10(-3) to 16.53 × 10(-3) s(-1) and the ratio of OH(•) to O3 concentrations (Rct) increased from 1.87 × 10(-8) to 126.4 × 10(-8). The calculated second-order rate constant (koverall) of the reaction of CYN with O3 and OH(•) was 3.22 M(-1)s(-1) without TiO2. However, the greatest improvement in koverall in this study was observed using 500 mg TiO2 L(-1), which increased koverall by a factor of five. TiO2-catalyzed ozonation is an efficient method of oxidation that reduces the toxic activity of CYN. The results of a Microtox test concerning the toxic activity of CYN during oxidation reveal that catalytic ozonation may either increase or reduce the toxicity of CYN toward test samples. The toxic effects of CYN on the samples are greatly influenced by the TiO2 dosage and reaction time, possibly yielding by-products that may change the mutagenic properties of CYN. Three water samples from a eutrophic lake in Taiwan were examined to evaluate the effect of dissolved organic carbon (DOC) and alkalinity on the oxidation of CYN. DOC had the greatest effect on the oxidation of CYN in the ozonation of eutrophic water. Overall, the degree of CYN oxidation depended on the rate constant of the reaction with ozone and the consumption of ozone by the natural water matrix.
    Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 09/2015; 50(11):1116-1126. DOI:10.1080/10934529.2015.1047664