Comparative biochemistry and physiology. Part A, Molecular & integrative physiology

Publisher: Elsevier

Journal description

Current impact factor: 1.97

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.966
2013 Impact Factor 2.371
2012 Impact Factor 2.167
2011 Impact Factor 2.235
2010 Impact Factor 2.134
2009 Impact Factor 2.196
2008 Impact Factor 1.709
2007 Impact Factor 1.863
2006 Impact Factor 1.553
2005 Impact Factor 1.351
2004 Impact Factor 1.635
2003 Impact Factor 1.556
2002 Impact Factor 1.274
2001 Impact Factor 1.026
2000 Impact Factor 0.883
1999 Impact Factor 0.916
1998 Impact Factor 0.645
1997 Impact Factor 0.748
1996 Impact Factor 0.618
1995 Impact Factor 0.531
1994 Impact Factor 0.64
1993 Impact Factor 0.619
1992 Impact Factor 0.623

Impact factor over time

Impact factor

Additional details

5-year impact 2.26
Cited half-life >10.0
Immediacy index 0.51
Eigenfactor 0.01
Article influence 0.66
Other titles Comparative biochemistry and physiology., Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, Comparative biochemistry and physiology., Molecular and integrative physiology, Molecular & integrative physiology, Comp. biochem. physiol., CBP., Comparative biochemistry and physiology
ISSN 1531-4332
OCLC 41929819
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • Bjarke Jensen · Magnus Elfwing · Ruth M Elsey · Tobias Wang · Dane A Crossley
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronary circulation of the heart evolved early within ectothermic vertebrates and became of vital importance to cardiac performance in some teleost fish, mammals and birds. In contrast, the role and function of the coronary circulation in ectothermic reptiles remains largely unknown. Here, we investigated the systemic and coronary arterial responses of five anesthetized juvenile American alligators (Alligator mississippiensis) to hypoxia, acetylcholine, adenosine, sodium nitroprusside, isoproterenol, and phenylephrine. We recorded electrocardiograms, monitored systemic blood pressure, blood flows in both aortae, and blood flow in a major coronary artery supplying most of the right ventricle. Coronary arterial blood flow was generally forward, but there was a brief retrograde flow during a ventricular contraction. Blood pressure was significantly changed in all conditions. Acetylcholine decreased coronary forward flow, but this response was confounded by the concomitant lowered work of the ventricles due to decreased heart rate and blood pressure. Coronary forward flow was poorly correlated with heart rate and mean arterial pressure across treatments. Overall changes in coronary forward flow, significant and not significant, were generally in the same direction as mean arterial pressure and ventricular power, approximated as the product of systemic cardiac output and mean arterial pressure.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 10/2015; DOI:10.1016/j.cbpa.2015.09.018
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intensive culture of the Senegalese sole (Solea senegalensis) is hampered by the low or null fertilization rates exhibited by the first generation (F1) of reared males. To investigate the regulation of the reproductive processes in this species by the pituitary gonadotropins follicle-stimulating and luteinizing hormones (Fsh and Lh, respectively), we developed a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for Lh measurements. Quantification of the Fsh and Lh plasma levels in cultured sole using the Lh ELISA developed here, and a previously developed ELISA for Fsh, indicated that in both males and females circulating Fsh steadily increased during autumn and winter and prior to the major spawning period in spring, whereas a Lh surge occurred specifically during spawning. The increase in Fsh was associated with a rise of plasma levels of the steroid hormones testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17β (E2), but that of Lh was concomitant with a strong decline of the levels of E2 in females and of 11-KT in males, possibly reflecting a rapid steroidogenic shift promoting the final maturation of oocytes and spermatozoa. Comparison of the plasma levels of gonadotropins and steroids between wild and F1 fish during autumn and spring revealed that F1 males showed significantly lower plasma Lh titres compared to wild males, whereas the levels of T and 11-KT were similar or more elevated in the F1 fish. These data suggest that an impaired Lh secretion during spawning, and perhaps altered Lh-mediated mechanisms in the testis, may be underlying causes for the low reproductive performance of Senegalese sole F1 males.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 09/2015; DOI:10.1016/j.cbpa.2015.09.015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Orexins (A and B) or hypocretins (1 and 2) are hypothalamic orexigenic neuropeptides that are involved in the regulation of several physiological processes in mammals. Recently, orexin has been shown to activate the hypothalamic-pituitary-adrenal (HPA) stress axis and emerging evidences identify it as a stress modulator in mammals. However, the regulation of orexin system by stress itself remains unclear. Here, we investigate the effects of heat, 4-Hydroxynonenal (4-HNE) and hydrogen peroxide (H2O2) stress on the hepatic expression of orexin (ORX) and its related receptors (ORXR1/2) in avian species. Using in vivo and in vitro models, we found that heat stress significantly down regulated ORX and ORXR1/2 mRNA and protein abundances in quail liver and LMH cells. H2O2, however, decreased ORX protein and increased ORX mRNA levels in a dose dependent manner (P<0.05). The absence of correlation between orexin mRNA and protein levels suggests that H2O2 treatment modulates post-transcriptional mechanisms. 4-HNE had a biphasic effect on orexin system expression, with a significant up regulation at low doses (10 and 20 μM) and a significant down regulation at a high dose (30 μM). Taken together, our data indicated that hepatic orexin system could be a molecular signature in the heat and oxidative stress response.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 09/2015; DOI:10.1016/j.cbpa.2015.08.016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternal mRNA governs early embryonic development in fish and variation in abundance of maternal transcripts may contribute to variation in embryonic survival and hatch success in European eel, Anguilla anguilla. Previous studies have shown that quantity of the maternal gene products β-tubulin, insulin-like growth factor 2 (igf2), nucleoplasmin (npm2), prohibitin 2 (phb2), phosphatidylinositol glycan biosynthesis class F protein 5 (pigf5), and carnitine O-palmitoyltransferase liver isoform-like 1 (cpt1) are associated with embryonic developmental competence in other teleosts. Here, the relations between relative mRNA abundance of these genes in eggs and/or embryos and egg quality, was studied and analyzed. We compared egg quality of the two groups: i) batches with hatching and ii) batches with no hatching. Results showed no significant differences in relative mRNA abundance between the hatch and no hatching groups for any of the selected genes at 0, 2.5, and 5 HPF. However, at 30 HPF the hatch group showed significantly higher abundance of cpt1a, cpt1b, β-tubulin, phb2, and pigf5 transcripts than the no hatch group. Therefore, these results indicate that up-regulation of the transcription of these genes in European eel after the mid-blastula transition, may be needed to sustain embryonic development and hatching success.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 09/2015; DOI:10.1016/j.cbpa.2015.09.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid hormones, in particular 3,5,3`-triiodothyronine or T3, are involved in multiple physiological processes in mammals such as protein, fat and carbohydrate metabolism. However, the metabolic actions of T3 in fish are still not fully elucidated. We therefore tested the effects of T3 on Sparus aurata energy metabolism and osmoregulatory system, a hyperthyroid-induced model was chosen. Fish were implanted with coconut oil depots (containing 0, 2.5, 5.0 and 10.0 μg T3/g body weight) and sampled at day 3 and 6 post-implantation. Plasma levels of free T3 as well as glucose, lactate and triglyceride values increased with increasing doses of T3 at days 3 and 6 post-implantation. Changes in plasma and organ metabolite levels (glucose, glycogen, triglycerides, lactate and total α amino acid) and enzyme activities related to carbohydrate, lactate, amino acid and lipid pathways were detected in organs involved in metabolism (liver) and osmoregulation (gills and kidney). Our data implicate that the liver uses amino acids as an energy source in response to the T3 treatment, increasing protein catabolism and gluconeogenic pathways. The gills, the most important extruder of ammonia, are fuelled not only by amino acids, but also by lactate. The kidney differs significantly in its substrate preference from the gills, as it obtained metabolic energy from lactate but also from lipid oxidation processes. We conclude that in Sparus aurata lipid catabolism and protein turnover are increased as a consequence of experimentally induced hyperthyroidism, with secondary osmoregulatory effects.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 09/2015; DOI:10.1016/j.cbpa.2015.09.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the context of the metabolic cold adaptation hypothesis (MCA), we investigated a) the life and activity cycle characteristics and b) the metabolic responses of the endemic land snail species Cattania trizona olympica living at 1100 m altitude in Olympos mountain (Greece). Field observations on the annual activity cycle of C. trizona olympica revealed that snails' activity was restricted mainly between the end of May and September, when the higher temperatures were recorded, while first matings were recorded in July and the last ones in mid September indicating a restricted favorable time period for reproduction. The activities of enzymes of intermediate metabolism showed a periodic seasonal pattern of change which seems to be closely related to the pattern of annual changes of air temperature and most of them exhibited higher activities during coldest and warmest period of year. Moreover the data indicate a distinct differentiation of fuels oxidation during arousal and reproductive period with lipids oxidation, apart from carbohydrates, contributing significantly to ATP turnover during reproductive activity. The higher enzymatic activities, determined in the tissues of C. trizona olympica than the corresponding ones determined in the tissues of the land snail species living at low altitudes, might indicate higher sensitivity of the intermediate metabolism and ATP turnover in C. trizona olympica to changes in environmental factors. Although the latter seems to be in line with the MCA hypothesis, it needs further investigation on metabolic rates to support it.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 09/2015; DOI:10.1016/j.cbpa.2015.09.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Snakes often undergo periods of prolonged fasting and under certain conditions can survive multiple years without food. Despite this unique phenomenon, there are relatively few reports of the physiological adaptations to fasting in snakes. At post-prandial day 1 (fed) or 21 (fasting), brain, liver, and adipose tissues were collected from juvenile checkered garter snakes (Thamnophis marcianus). There was greater glycerol-3-phosphate dehydrogenase (G3PDH) specific activity in the liver of fasted than fed snakes (P = 0.01). The mRNA abundance of various fat metabolism-associated factors was measured in brain, liver and adipose tissue. Lipoprotein lipase (LPL) mRNA was greater in fasted than fed snakes in the brain (P = 0.04). Adipose triglyceride lipase (ATGL; P = 0.006) mRNA was greater in the liver of fasted than fed snakes. In adipose tissue, expression of peroxisome proliferator-activated receptor (PPAR)γ (P = 0.01), and fatty acid binding protein 4 (P = 0.03) was greater in fed than fasted snakes. Analysis of adipocyte morphology revealed that cross-sectional area (P = 0.095) and diameter (P = 0.27) were not significantly different between fed and fasted snakes. Results suggest that mean adipocyte area can be preserved during fasting by dampening lipid biosynthesis while not changing rates of lipid hydrolysis. In the liver however, extensive lipid remodeling may provide energy and lipoproteins to maintain lipid structural integrity during energy restriction. Because the duration of fasting was not sufficient to change adipocyte size, results suggest that the liver is important as a short-term provider of energy in the snake.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 09/2015; DOI:10.1016/j.cbpa.2015.09.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: The paradox of secondary metabolites, toxic defence compounds produced by plants, in nectar and fruits is well known. Deterrence of feeding by nectarivorous and frugivorous birds is better understood than the effect of these chemicals on the digestive performance of birds. Digestive parameters such as transit time and sugar assimilation are important in assessing nutrient utilization and deterrence may be related to post-ingestive effects involving these parameters. Nectar and many fruits contain mainly sugars and water, and avian consumers compensate for low sugar content in their diet by increasing food intake: this may also increase their intake of secondary metabolites. We investigated how the alkaloid nicotine, naturally present in nectar of Nicotiana species, influences compensatory feeding and digestive performance of nectar-feeding birds. High nicotine concentration negatively affected compensatory feeding and apparent assimilation efficiency of white-bellied sunbirds Cinnyris talatala and Cape white-eyes Zosterops virens; but nicotine slowed gut transit time only in the latter species. In contrast, food intake and digestive performance of dark-capped bulbuls Pycnonotus tricolor was unaffected by nicotine up to a concentration of 50 μM. Bulbuls are primarily frugivorous, hence they are more exposed to secondary metabolites than sunbirds and possibly white-eyes. Because their diet is richer in toxins, frugivorous birds may have evolved more efficient detoxification strategies than those of specialist nectar-feeding birds.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 09/2015; DOI:10.1016/j.cbpa.2015.08.015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14days post-hatch. As a percent of body weight, abdominal fat increased (P<0.001) with age. At day 4, clavicular and subcutaneous fat depots were heavier (P<0.003) than abdominal fat whereas at day 14, abdominal and clavicular weighed more (P<0.003) than subcutaneous fat. Adipocyte area and diameter were greater in clavicular and subcutaneous than abdominal fat at 4 and 14days post-hatch (P<0.001). Glycerol-3-phosphate dehydrogenase (G3PDH) activity increased (P<0.001) in all depots from day 4 to 14, and at both ages was greatest in subcutaneous, intermediate in clavicular, and lowest in abdominal fat (P<0.05). In clavicular fat, peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein (CEBP)α, CEBPβ, fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL), neuropeptide Y (NPY), and NPY receptor 5 (NPYR5) mRNA increased and NPYR2 mRNA decreased from day 4 to 14 (P<0.001). Thus, there are site-specific differences in broiler chick adipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors. Copyright © 2015. Published by Elsevier Inc.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 08/2015; 189. DOI:10.1016/j.cbpa.2015.08.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chickens selected for low (LWS) and high (HWS) juvenile body weight (BW) for 55 generations differ in BW by 10-fold at selection age. High (HWR) and low (LWR) body weight-relaxed lines have been random-bred since the 46th generation. Our objective was to evaluate the developmental and nutritional regulation of pancreatic mRNA abundance of pancreatic and duodenal homeobox 1 (PDX1), preproinsulin (PPI), preproglucagon (PPG), and glucose transporter 2 (GLUT2). At day of hatch (DOH) and days 1, 3, 7, and 15 (D1, 3, 7 and 15, respectively), pancreas was collected and real time PCR was performed in Experiment 1. In Experiment 2, HWS and LWS were fed or delayed access to food for 72 hours post-hatch, and pancreas collected at D15. There was an interaction of line and age for GLUT2 (P = 0.001), PPI (P < 0.0001), PPG (P = 0.034), and PDX1 (P < 0.0001). Expression was greater in chicks from LWR and LWS than HWR and HWS. There was an interaction of line and nutrition on PPG (P < 0.0001) and GLUT2 (P = 0.001) mRNA, where expression was similar among chicks that were fed but greater in LWS than HWS when chicks were delayed access to food. Thus, the first two weeks is important for maturation of pancreatic endocrine function. Long-term selection for BW is associated with differences in pancreas development, and delaying access to food at hatch may have persisting effects on glucose regulatory function. Copyright © 2015. Published by Elsevier Inc.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 08/2015; 189. DOI:10.1016/j.cbpa.2015.08.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with the proteasomal inhibitor, MG132 or the environmental toxicants, sodium arsenite or cadmium chloride, induced the accumulation of the small heat shock protein, HSP30, in total and in both soluble and insoluble protein fractions. Immunocytochemical analysis revealed the presence of relatively large HSP30 structures primarily in the perinuclear region of the cytoplasm. All three of the stressors promoted the formation of aggresome-like inclusion bodies as determined by immunocytochemistry and laser scanning confocal microscopy using a ProteoStat aggresome dye and additional aggresomal markers, namely, anti-γ-tubulin and anti-vimentin antibodies. Further analysis revealed that HSP30 co-localized with these aggresome-like inclusion bodies. In most cells, HSP30 was found to envelope or occur within these structures. Finally, we show that treatment of cells with withaferin A, a steroidal lactone with anti-inflammatory, anti-tumour and proteasomal inhibitor properties, also induced HSP30 accumulation that co-localized with aggresome-like inclusion bodies. It is possible that proteasomal inhibitor or metal/metalloid-induced formation of aggresome-like inclusion bodies may sequester toxic protein aggregates until they can be degraded. While the role of HSP30 in these aggresome-like structures is not known, it is possible that they may be involved in various aspects of aggresome-like inclusion body formation or transport. Copyright © 2015. Published by Elsevier Inc.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 08/2015; 189. DOI:10.1016/j.cbpa.2015.07.022
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the face of a changing climate, questions regarding sub-lethal effects of elevated habitat temperature on the physiology of ectotherms remain unanswered. In particular, long-term responses of ectotherms to the warming trend in tropical regions are unknown and significantly understudied due primarily to the difficulties in specimen and community traceability. In freshwater lakes employed as cooling reservoirs for power plants, increased physiological stress from high water temperature can lead to an increase in mortality, reduce growth, and potentially alter the community structure of fishes. Throughout this study, we employ this highly tractable system to assess how elevated thermal regimes can alter the physiology and consequently the ecology of aquatic species. We documented a significantly reduced lifespan, growth performance, and a shift in the age structure toward younger individuals in the thermally impacted population of bluegill (Lepomis macrochirus) in Coffeen Lake in Illinois, compared to a non-impacted control group (Lake Mattoon). Average age calculated for the Lake Mattoon population was 2.42years, whereas the average age of bluegill from Coffeen Lake was only 0.96years. The average specimen mass in Lake Mattoon was more than six times that of Coffeen Lake average (Mattoon=60.26g; Coffeen=9.42g). During laboratory cross-acclimation studies of bluegill from Lake Mattoon at 17.5 and 35.0°C, citrate synthase activity obtained from white muscle was regulated through acclimation, whereas cold-acclimated specimens exhibited twice the activity at 25°C, if compared to CS activity values from warm-acclimated specimens. This study raises the questions about the causal relationships between physiological performance and habitat temperature, in particular how thresholds in an organism's physiology may modulate their community structure, and consequently their ecological success. Copyright © 2015. Published by Elsevier Inc.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 08/2015; DOI:10.1016/j.cbpa.2015.07.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seawater acclimation is a critical period for anadromous species and a process yet to be understood in lampreys. Considering that changes in lipid composition of the gill cells´ basolateral membranes may disrupt the major transporter Na(+)K(+)-ATPase, this study goal was to detect changes at this level during juvenile sea lamprey seawater acclimation. The results showed that saltwater acclimation has a direct effect on the fatty acid composition of gill cells basolateral membrane´s phospholipids. When held in full-strength seawater, the fatty acids profile of basolateral membrane´s phospholipids suffered a restructure by increasing either saturation or the ratio between oleic acid and eicosapentaenoic acid. Simultaneously, the activity of Na(+)K(+)-ATPase revealed a significant and positive correlation with basolateral membrane´s cholesterol content in presence of highest salinity. Our results pointed out for lipid adjustments involving the functional transporter present on the gill cell basolateral membranes to ensure the role played by branchial Na(+)K(+)-ATPase in ion transport during saltwater acclimation process. The responses observed contributed to the strategy adopted by gill cell´s basolateral membranes to compensate for osmotic and ionic stressors, to ensure the success of the process of seawater acclimation associated with the downstream trophic migration of juvenile sea lamprey. Copyright © 2015. Published by Elsevier Inc.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 08/2015; 189. DOI:10.1016/j.cbpa.2015.07.018