Restoration Ecology (Restor Ecol)

Publisher: Society for Ecological Restoration; Society for Ecological Restoration International, Wiley

Journal description

Restoration Ecology fosters the exchange of ideas among the many disciplines involved in the process of ecological restoration. Addressing global concerns and communicating them to the international scientific community, the Journal is at the forefront of a vital new direction in science and ecology. Original papers describe experimental, observational, and theoretical studies on terrestrial, marine, and freshwater systems, and are considered without taxonomic bias.The primary emphasis of the Journal is on ecological and biological restoration, and it also publishes papers on soils, water, air, and hydrologic functions. Edited by a distinguished panel, the Journal continues to be a major conduit for research scientists to publish their findings in the fight to not only halt ecological damage, but also to ultimately reverse it.

Current impact factor: 1.99

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 1.991
2012 Impact Factor 1.764
2011 Impact Factor 1.681
2010 Impact Factor 1.927
2009 Impact Factor 1.665
2008 Impact Factor 1.892
2007 Impact Factor 1.928
2006 Impact Factor 1.612
2005 Impact Factor 1.38
2004 Impact Factor 1.177
2003 Impact Factor 0.842
2002 Impact Factor 0.901
2001 Impact Factor 1.011
2000 Impact Factor 1.024
1999 Impact Factor 1.236
1998 Impact Factor 0.472
1997 Impact Factor 0.847

Impact factor over time

Impact factor

Additional details

5-year impact 2.15
Cited half-life 7.40
Immediacy index 0.27
Eigenfactor 0.01
Article influence 0.69
Website Restoration Ecology website
Other titles Restoration ecology (Online), Restoration ecology
ISSN 1526-100X
OCLC 41986237
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • On a non-profit server
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Wild canids were historically abundant in Korea; however, the gray wolf, dhole, and red fox were extirpated during the twentieth century. The causes varied. “Pest control” during the Japanese occupation, ecological destruction during wars, disease epizootics, and “vermin control” after the Korean War contributed to the complete demise of wolves. The fox had succumbed to unregulated hunting, rodenticides, habitat loss, and disease epizootics. The dhole was naturally rare; its extirpation from northeastern Asia including Korea is not established. Although the wolf and fox are extirpated, the Korean government still lists both as endangered species to facilitate the recently implemented restoration programs. Restoration will face the challenges of importing genetically diverse populations and the critical loss, fragmentation, and alteration of peri-urban habitats. The overall social support for these efforts is not clear: it may be low because of changes in social mores or simply an unintended consequence of land and water use choices and policies that people may not perceive in everyday life. In this critical analysis, we postulate that the current restoration programs are misdirected toward inappropriate species and likely employ outdated techniques. We propose that a reallocation of restoration efforts and resources to populations of existing rare or threatened species would be more ecologically beneficial with higher probabilities of success. We recognize that there can be good reason to restore the upper trophic levels, especially keystone species, but are concerned that the impetus is more about focusing on charismatic megafauna rather than pragmatic choices more likely to be effective.
    Restoration Ecology 08/2015; DOI:10.1111/rec.12256
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ecological restorations often require removal of invasive species. The abundance of invasives has tended to catalyze research emphasizing removal, not broader understandings, of species mechanisms for persistence in the landscape (e.g. reproductive output and seed dispersal). Asiatic shrub honeysuckles (Lonicera spp.) are pernicious invaders throughout eastern North America. Heavy tree canopy cover apparently reduces growth and reproductive output in Lonicera maackii, which is widespread through the lower Midwestern United States. To help focus control efforts more effectively, we quantified the effect of tree canopy cover on vegetative growth, flowering, and fruit production under three canopy densities. Mean vegetative growth of flowering shoots was not affected by canopy cover. All aspects of sexual reproduction (flower production, fruit set, fruit number, fruit mass, seed number, and seed size) were strongly reduced by moderate shade. Although all individuals modify community and ecosystem properties, a limited number of high light individuals might also provide the greatest proportion of the seeds. Through model simulation of honeysuckle population structure in relation to canopy cover, we argue that it can sometimes be more efficient to initially target reproductive individuals in the high light edge and interior gap environments than to immediately focus on all individuals in the forest interior.
    Restoration Ecology 08/2015; DOI:10.1111/rec.12260
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation) and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whether planting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extent to which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may be indicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restoration efforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetation attributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses; floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generally hydrophytic, but species composition differed from that of mature bottomland forest because of young successional age and differing responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variation in canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes of restoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.
    Restoration Ecology 07/2015; 23(4):402-412. DOI:10.1111/rec.12210
  • [Show abstract] [Hide abstract]
    ABSTRACT: Creating native-species-rich grasslands to replace agricultural grasslands can be an important strategy for supplementing the area of grasslands, which are in decline in many regions. In the northeastern United States, sandplain grasslands support a diverse plant community and rare plant and animal species that are declining because of reductions in historical disturbances such as fire and grazing. We designed an experiment on Martha's Vineyard, Massachusetts, to test methods of establishing native-species-rich coastal sandplain grassland on former agricultural land. We tested the efficacy of: (1) tilling, herbicide, hot foam, and plastic cover in removing initial nonnative vegetation, and (2) combinations of tilling and seeding for establishing native species. We measured native and nonnative species richness and percent cover before and for 5 years after treatment. Herbicide, plastic cover, and spring, summer, and fall tilling were about equally effective in reducing nonnative species cover and promoting native species cover. Tilling and seeding each increased native species richness and percent cover, and seeding and tilling together increased native species richness and cover more than either treatment alone. Combined seeding and disturbance also reduced the cover of nonnative species, but nonnative species cover remained higher than in adjacent reference sandplain grassland. Results indicated that native species establishment was enhanced by the availability of seeds and by reduction of initial nonnative plant cover. The most efficient method of converting coastal agricultural grasslands to sandplain grassland with a higher number and proportion of native species is a single season of plant removal and seeding.
    Restoration Ecology 07/2015; DOI:10.1111/rec.12253
  • [Show abstract] [Hide abstract]
    ABSTRACT: Restoration approaches rely on native plants; yet in some situations, natural vegetation may not grow fast enough to prevent the fragmentation of original vegetation and the consequent negative impacts on fauna. In this context, some introduced plants may grow faster and provide more food than native species, and they may also contribute to human livelihood. We investigate to what extent introduced plant species (1) can serve as habitat and food for endemic vertebrates and (2) provide benefits to local people. We address this question in Madagascar, characterized by high degrees of endemism, long histories of coevolution between endemic species, highly fragmented forests, and a high reliance of the rural population on natural resources. A literature search for interactions between endemic fauna and introduced flora revealed that 100 of 1,379 introduced species recorded for Madagascar are used by endemic vertebrates. They provide food mainly for primates, flying foxes, and birds, and habitat for all terrestrial vertebrate groups. One hundred vertebrate species were reported to use introduced plants, many of which are fast growing and are useful for populations. Although these introduced plants should be approached with caution due to their potentially invasive behavior, many introduced plants can provide services for the native fauna and for humans. For example, trees can provide an interim solution to secure the survival of endemic fauna that otherwise would be lost due to fragmentation effects. These plants could bridge the time lag until native forest regeneration or restoration with native trees will have become effective.
    Restoration Ecology 07/2015; DOI:10.1111/rec.12246
  • [Show abstract] [Hide abstract]
    ABSTRACT: Roads and associated stream crossings can modify and degrade natural hydrology of a system and alter organism movement. Culvert replacement and stream crossing improvements are extremely common and often done with the intent to improve biotic integrity of a system. We evaluated 3 sites where poor road-stream crossings were improved by replacing improper culverts with full-span natural bottom structures. We used a before-after-control-impact paired series (BACIPS) design to determine if there was evidence of associated improvement in biotic integrity of the stream communities. Biotic integrity indices developed for coldwater fish and macroinvertebrates in the Northern Lakes and Forests Ecoregion were used to estimate responses of the biotic communities adjacent to culvert replacements. With poor to fair fish and macroinvertebrate communities prior to culvert replacement, we predicted communities would show improvement into the good range of the indices. With 2–4 years of pre-data and 3–5 years of postdata, we were not able to detect improvements in overall biotic integrity utilizing fish or macroinvertebrate index scores. Road crossing improvements may synergistically restore stream ecosystems, restore natural sediment dynamics, and improve passage; however, in these cases local biotic integrity scores were not significantly improved. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity and biological communities or fisheries; however, as restoration practitioners, researchers, and managers, assessing these claims and learning from prior restoration attempts is necessary.
    Restoration Ecology 07/2015; DOI:10.1111/rec.12250
  • [Show abstract] [Hide abstract]
    ABSTRACT: The major focus of ecological restorations has been on understanding local factors. However, landscape factors such as dispersal limitation of individuals or propagules across the surrounding matrix can also constrain the restoration progress. We investigated to what extent native woody species colonize and thrive in plantations, focusing on both the role of local factors such as grazing and canopy cover as well as on landscape factors. We recorded all native tree and shrub species in 60 small Eucalyptus plantations embedded in an open agricultural landscape at 0.1–12 km from a remnant continuous forest in central Ethiopia. We found a total of 1,571 individuals of native woody plants belonging to 55 species. Number of such species in a plantation increased significantly with the height of the grass sword indicating their sensitivity to grazing. Moreover, the number of woody species in the patches decreased significantly with distance to the forest. Our results illustrate the need for regulating the grazing pressure for a successful regeneration of native species in Eucalyptus plantations. In addition, sowing or planting native trees will be necessary in most plantations, as only few remnant natural forests that could act as seed sources occur across the Ethiopian highlands. Another main obstacle might be the prohibition of selling timber of native trees, which indirectly discourage farmers from letting native trees regenerate. Thus, the increasing cover of Eucalyptus seen across the country will not automatically foster a recovery of native woody plant biodiversity, even if managed to optimize local environmental conditions.
    Restoration Ecology 07/2015; DOI:10.1111/rec.12257
  • Restoration Ecology 06/2015; DOI:10.1111/rec.12238
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this work was to obtain an overview of studies on ecological restoration carried out in Argentina to date. By means of the Scopus database, we performed two literature searches, one in Spanish (restau* and Argentina) and the other in English (restor* and Argentina). Between 1996 and 2013, 105 publications were registered, representing 2% of publications in Biology and Ecology. Most of these appeared in international journals (87%), in English (86%), and 28% were coauthored with researchers from other countries, favoring visibility at an international level. We observed an increase in the number of studies per year over time, with a significant increase beginning in 2008. Of the 18 ecological regions in Argentina, we found studies relating to 12 as well as four studies relating to restoration in urban areas. This review of the literature is intended to increase awareness of restoration in Argentina and help identify current gaps relating either to this subject or to specific ecological regions.
    Restoration Ecology 06/2015; DOI:10.1111/rec.12240
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much of the primary forest in the eastern United States that was converted to farmland between 1600 and 1900 has reverted back to second growth forest as a result of agriculture abandonment. This reversion back to forest gives soil productivity a chance to recover, though the rates of recovery are not well understood. Understanding the legacy effects of past disturbances like agriculture can provide important insights to support ecological restoration efforts on disturbed soils. Our goal with this study was to further understand the effects of forest development on soil productivity after agriculture abandonment. We used a chronosequence approach to examine soil properties over a 60-year temporal scale of forest development on abandoned agricultural lands in Saratoga and Rensselaer Counties in New York, U.S.A. We measured soil properties within this chronosequence to test the hypothesis that there would be measurable recoveries of soil physical properties and fertility over time. We observed rapid recovery of physical properties (lower bulk density and higher macroporosity) of surface soils within 5–10 years after agricultural abandonment. However, we found a legacy effect of agricultural compaction still evident in subsoils, with soil strength measurements indicating that past agricultural practices still limited root growth 55–60 years after abandonment. Soil percent organic matter and mineralizable nitrogen (N) both increased with forest development, but biomass accumulation may be slowed by limited root growth in the subsoil due to high strength. We recommend assessing subsoil physical properties when developing ecological restoration plans for agricultural lands.
    Restoration Ecology 06/2015; DOI:10.1111/rec.12241