International Journal of Phytoremediation (INT J PHYTOREMEDIAT )

Publisher: Association for the Environmental Health of Soils; Association for Environmental Health and Sciences, Taylor & Francis

Description

The International Journal of Phytoremediation covers a wide range of topics related to phytoremediation - not just the techniques. From building partnerships with environmental regulators to managing the physical effects of phytoremediation, you'll find it all in this comprehensive journal. With its peer-reviewed, multidisciplinary articles, you can master phytoremediation and make it a realistic solution to your needs. Topics include: A fragment solution to soil remediation; Enhancement of Cr (III) phytoaccumulation; Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated soils; Assessing plant phytoextraction potential through mathematical modeling; Differential tolerance of cool- and warm-season grasses to TNT-contaminated soil; Cropping as a phytoremediation practice for oily desert soil; Plant screening for chromium phytoremediation; Amendment optimization to enhance lead extractability from contaminated soils for phytoremediation; A preparation technique for analysis of explosives in plant tissues.

  • Impact factor
    1.18
    Show impact factor history
     
    Impact factor
  • 5-year impact
    1.51
  • Cited half-life
    5.00
  • Immediacy index
    0.25
  • Eigenfactor
    0.00
  • Article influence
    0.37
  • Website
    International Journal of Phytoremediation website
  • Other titles
    Soil & sediment contamination (Online), Soil & sediment contamination, Soil and sediment contamination
  • ISSN
    1522-6514
  • OCLC
    54071039
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 month embargo for STM, Behavioural Science and Public Health Journals
    • 18 month embargo for SSH journals
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • Pre-print on authors own website, Institutional or Subject Repository
    • Post-print on authors own website, Institutional or Subject Repository
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • Publisher will deposit to PMC on behalf of NIH authors.
    • STM: Science, Technology and Medicine
    • SSH: Social Science and Humanities
    • 'Taylor & Francis (Psychology Press)' is an imprint of 'Taylor & Francis'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A hydroponic experiment was conducted to investigate the effects of cadmium (Cd) on chlorophyll fluorescence and photosynthetic parameters on a Cd accumulating plant of Elsholtzia argyi. Four weeks-seedlings of E. argyi were treated with 0 (CK) 5, 10, 15, 20, 25, 30, 40, 50 and 100 μmol L(-1) Cd for 21days. Fv/Fo, Fv/Fm, qP, ΦPSП, ETR and Fv'/Fm' were significantly increased under low Cd (5-15 μmol L(-1) for Fv/Fo, Fv/Fm and qP, 5-10 μmol L(-1) for ΦPSП, ETR and Fv'/Fm') stress, and these parameters were similar to control under Cd ≤ 50μmol L(-1). All above parameters were significantly decreased at 100 μmol L(-1) Cd. Compared with control, Pn was significantly (P < 0.05) increased under 5-30 μmol L(-1) Cd. However, 50 and 100 μmol L(-1) Cd significantly (P < 0.05) reduced it. Gs and Tr were substantially decreased at 50-100 and 40-100 μmol L(-1) Cd, respectively. Ci was significantly increased at 50 and 100 μmol L(-1) Cd. High Cd-induced decrease of Pn is not only connected to stomatal limitation but also to the inhibition of Fv/Fo, Fv/Fm, ΦPSП, qP, ETR and increase of NPQ. Maintain chlorophyll fluorescence and photosynthesis parameters under its Cd tolerance threshold were one of tolerance mechanisms in E. argyi.
    International Journal of Phytoremediation 01/2015; 17(1):85-92.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH > 6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.
    International Journal of Phytoremediation 01/2015; 17(1):25-39.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.
    International Journal of Phytoremediation 01/2015; 17(1):49-55.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The comparative effect of fertilizers (NPK), plant growth regulators (GA3, IAA, Zeatin) and sodium chloride (NaCl) on Cd phytoaccumulation, proline and phenolics production in Cannabis sativa was evaluated. Proline and phenolices were correlated with Cd contents in plant. Cd significantly reduced the plant growth. Fertilizers application (in combination) most significantly increased the growth (19 cm root and 47 cm shoot) on Cd contaminated soil. All treatments increased the Cd contents in plant tissues. This increase was highly significant in fertilizers treated plants (1101, 121 and 544 ppm in roots, stem and leaves respectively). Significantly positive correlation was found between Cd concentration and dry biomass of root (R(2) = 0.7511) and leaves (R(2) = 0.5524). All treatments significantly increased the proline and total phenolics and maximum was recorded in NaCl treated plants followed by fertilizers. Proline was higher in roots while phenolics in leaves. The correlation between proline and phenolics was positive in leaf (R(2) = 0.8439) and root (R(2) = 0.5191). Proline and phenolics showed positive correlation with Cd concentration in plant. Conclusively, fertilizers in combination seem to be the better option for Cd phytoextraction. Further investigation is suggested to study the role of phenolics and proline in Cd phytoextraction.
    International Journal of Phytoremediation 01/2015; 17(1):56-65.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.
    International Journal of Phytoremediation 01/2015; 17(1):40-48.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study assessed the accumulation of Cd (II), Hg (II), Cr (VI) and Pb (II) in Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) planted in constructed wetlands treating synthetic landfill leachate. Sixteen bioreactors were operated in two experimental blocks. Metal concentrations in the influent and effluent; root, stem, branch and leaves of plants were analysed, as well as COD, N-NH4(+), TKN, T, pH, ORP, DO, and EC. Average removal efficiencies of COD, TKN and NH4(+)-N were 66, 67 and 72%, respectively and heavy metal removal ranged from 92 to 98% in all units. Cr (VI) was not detected in any effluent sample. The bioconcentration factors (BCF) were 10(0) -10(2). The BCF of Cr (VI) was the lowest: 0.59 and 2.5 (L kg(-1)) for Gs and He respectively; whilst Cd (II) had the highest (130-135 L kg(-1)) for Gs. Roots showed a higher metal content than shoots. Translocation factors (TF) were lower, He was the plant exhibiting TFs >1 for Pb (II), Cr (T) and Hg (II) and 0.4-0.9 for Cd (II) and Cr (VI). The evaluated plants demonstrate their suitability for phytoremediation of landfill leachate and all of them can be categorized as metals accumulators.
    International Journal of Phytoremediation 01/2015; 17(1):16-24.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mono-, di-, and triethylene glycol are chemicals used in various industrial (polyester products, plasticizers, printing, etc.) and domestic settings. The toxicity of these compounds is relatively low, but they do pose risks to the environment. Phytoremediation of the three glycols by Echinodorus cordifolius L. Griseb. were studied. The glycols were degraded in the leaves and roots, but leaves were the main source of degradation. The results of this study indicate that the plant can degrade triethylene glycol to diethylene glycol, diethylene glycol to 1,4-dioxan-2-one, or even further to monoethylene glycol. Moreover, 2-methoxy-4-vinylphenol, 1,2-cyclopentanedione, 1,4:3,6-dianhydro-.alpha.-d-glucopyranose, 2-propenamide, and 2,5-anhydro-1,6-dideoxyhexo-3,4-diulose were produced by this plant in response to the glycols.
    International Journal of Phytoremediation 01/2015; 17(1):93-100.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, concentrations of heavy metals (Fe, Mn, Ni, Co, Zn, Cu, and Pb) were measured in water bodies including streams, bottom sediments and various wetland plants of Kızılırmak Delta. Kızılırmak Delta is one of the largest and the most important natural wetlands in Turkey and has been protected by Ramsar convention since 1993. The heavy metal concentrations in water were found lower than that of national standards for protected lakes and reserves. In bottom sediments and wetland plants, however, the accumulated amounts of different heavy metals varied in the following order: Fe>Mn>Zn>Ni>Co>Cu>Pb, and Fe>Mn>Zn>Ni>Co respectively. Heavy metal uptake of Hydrocharis morsus-ranae and Myriophyllum verticillatum plants among others were found far above the toxic levels and they might be used as bio-indicators and heavy metal accumulators in polluted natural areas.
    International Journal of Phytoremediation 01/2015; 17(1):66-75.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea.
    International Journal of Phytoremediation 01/2015; 17(1):9-15.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23-0.28 mg kg(-1), almost down to the standard limit (0.2 mg kg(-1)). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.
    International Journal of Phytoremediation 01/2015; 17(1):76-84.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA) is an endocrine disruptor compound widespread in terrestrial and aquatic systems of urbanized and industrialized regions. This study evaluated the capacity of ryegrass (Lolium perenne) aqueous exudates to degrade BPA at a concentration of 10 mg L(-1) both in the absence and in the presence of an organic fraction often coexisting with plant exudates, i.e., natural organic matter (NOM), tested at a concentration of 20 mg L(-1). In exudates alone, BPA degradation ceased after one day from the product addition when residual BPA resulted 65% of the initial BPA, whereas in exudates with the addition of NOM the degradation process continued for 4 days when residual BPA resulted 49%. Measurements of peroxidase and laccase activities in exudates suggested a significant involvement of these enzymes in BPA degradation. This finding was further confirmed by the almost complete absence of BPA degradation in aqueous exudates strongly acidified. In some BPA-contaminated exudates, chromatographic analysis revealed the presence of a newly formed compound identified as a BPA oxidation product by Fourier transform - ion cyclotron resonance mass spectrometry analysis. In conclusion, ryegrass exudates possess a relevant decontamination capacity towards BPA which persists and appears to be enhanced by the addition of NOM.
    International Journal of Phytoremediation 01/2015; 17(1):1-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract An eco-friendly and cost effective technique- phytoremediation was used to remediate contaminants from waste water. This study demonstrated that phytoremediation ability of duckweed (Lemna minor L.) to remove chloride, sulphate from Biological Oxygen Treatment (BOT) waste water of coke oven plant. The BOT water quality was assessed by analyzing physic-biochemical characters - pH, Biological oxygen demand (BOD), Chemical oxygen demand (COD), total dissolved solids (TDS) and elemental concentration. It was observed that an increase in pH value indicated an improvement of water quality. The experimental results showed that, duck weed effectively removed 30% chloride, 16% sulphate and 14% TDS from BOT waste water, which suggested its ability in phytoremediation for removal of chloride and sulphate from BOT waste water. A maximum increase of 30% relative growth rate of duck weed was achieved after 21 days of experiment. Thus, it was concluded that duckweed, an aquatic plant, can be considered for treatment of the effluent discharged from the coke oven plant.
    International Journal of Phytoremediation 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT A pot experiment was carried out to study the effect of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6) on Cd phytoextraction and detoxification in ryegrass. Foliar spray of DA-6 significantly enhanced Cd extraction efficiency (P < 0.05), with 1 μM DA-6 the most effective. At the subcellular level, 43-53% of Cd was soluble fraction and 23-46% in cell wall, and 9-25% in organelles. Chemical speciation analysis showed that 52.7-58.5% of Cd was NaCl extractable, 12.1-22.7% ethanol extractable, followed by other fractions. DA-6 alleviated metal toxicity by fixing more Cd in cell wall and decreasing Cd migration in plant. In conclusion, ryegrass tolerates Cd by cell wall compartmentalization along with protein and organic acids combination, and the treatment of 1 μM DA-6 appears to be optimal for enhancing the remediation efficiency of ryegrass for Cd contaminated soil.
    International Journal of Phytoremediation 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N) and soluble phosphorus (sol. P) are upto 65%, 98%, 70% and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater.
    International Journal of Phytoremediation 09/2014;
  • International Journal of Phytoremediation 08/2014; 17(1):56-65.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A finite element code was used for investigating the effect of some relevant characteristics of a phytoremediation project (crop type and density, presence of an irrigation system, soil capping and root depth). The evolution of the plume of contamination of Cd2+, Pb2+ and Zn2+ was simulated taking into account reactive transport and root processes. The plant contaminant uptake model was previously calibrated using data from greenhouse experiments. The simulations adopted pedological and climatological data representative of a sub-tropical environment. Although the results obtained were specific for the proposed scenario, it was observed that, for more mobile contaminants, poor water conditions favour stabilization but inhibit plant extraction. Otherwise an irrigation system that decreases crop water stress had an opposite effect. For less mobile contaminants, the remediation process did not have appreciable advantages. Despite its simplifying assumptions, particularly about contaminant sorption in the soil and plant system, the numerical analysis provided useful insight for the phytoextraction process important in view of field experiments.
    International Journal of Phytoremediation 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4, 6, or 8 kg m–3] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg–1) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.
    International Journal of Phytoremediation 03/2014; 16(3):285-301.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70–179, Pb:8–130, Zn:200–971, Ni:74–296, Co:31–90, Mn:1983–4139, V:165–383, Cr:42–1054, Ba:26–239, Sc:21–56, Al:6.11–9.84, Th:7–22, Sr:30–190, La:52–115, Zr:111–341, Y:10–49, Nb:90–172 in mg kg−1, and Ti:2.73–4.09 and Fe:12–16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc >Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbiculare for Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.
    International Journal of Phytoremediation 03/2014; 16(3):302-319.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg-1oilcake manure + 5 mmol kg-1 EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg-1and lead accumulation up to 16.11, 13.44 and 3.17 mg kg-1, respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR=0.676%) and Pb (RR=0.202%) at Mumfordganj contaminated site (S2). However, the aforesaid parameters were also observed at par with the treatment T5 [2.5 g kg-1oilcake manure + 2 g kg-1 humic acid]. Applied EDDS altered chlorophyll–a, chlorophyll–b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73-8.65%, 5.81-17.65% and 7.04-17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process.
    International Journal of Phytoremediation 02/2014;

Related Journals