Angewandte Chemie International Edition (Angew Chem Int Ed )

Publisher: Gesellschaft Deutscher Chemiker, John Wiley & Sons

Description

Angewandte Chemie is one of the prime chemistry journals in the world with an ISI-measured Impact Factor higher than those of comparable journals (1999: 7.996). Moreover it is the only journal in the field to have a stimulating mixture of review articles highlights and short communications. The "reviews" written by leading experts summarize the important results of recent research on topical subjects in all branches of chemistry point to unresolved problems and discuss possible developments. The "highlights" provide concise evaluations of current trends in chemical research. The communications are critically selected and report on the latest research results making the journal indispensable to the chemist who wants to stay well informed. Angewandte Chemie also regularly publishes Nobel lectures in chemistry and related fields. Kurztext Auch die internationale Ausgabe der Angewandten Chemie zählt zu den führenden bedeutenden Chemiezeitschrifent weltweit. Chemiker wissen daß sie hier das Neueste aus der Chemie bestens aufbereitet vorfinden. Society Affiliation German Chemical Society ( Gesellschaft Deutscher Chemiker ) Readers Chemists of all disciplines

  • Impact factor
    11.34
  • 5-year impact
    13.56
  • Cited half-life
    5.50
  • Immediacy index
    2.96
  • Eigenfactor
    0.54
  • Article influence
    3.50
  • Website
    Angewandte Chemie International Edition website
  • Other titles
    Angewandte Chemie (International ed. in English: Online), Angewandte Chemie, Angewandte Chemie international edition in English, Angewandte Chemie international edition
  • ISSN
    1521-3773
  • OCLC
    43968233
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

John Wiley & Sons

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • See Wiley-Blackwell entry for articles after February 2007
    • On personal web site or secure external website at authors institution
    • Not allowed on institutional repository
    • JASIST authors may deposit in an institutional repository
    • Non-commercial
    • Pre-print must be accompanied with set phrase (see individual journal copyright transfer agreements)
    • Published source must be acknowledged with set phrase (see individual journal copyright transfer agreements)
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'John Wiley and Sons' is an imprint of 'Wiley-Blackwell'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A fluorescent protein-labeling strategy was developed in which a protein of interest (POI) is genetically tagged with a short peptide sequence presenting two Cys residues that can selectively react with synthetic fluorogenic reagents. These fluorogens comprise a fluorophore and two maleimide groups that quench fluorescence until they both undergo thiol addition during the labeling reaction. Novel fluorogens were prepared and kinetically characterized to demonstrate the importance of a methoxy substituent on the maleimide in suppressing reactivity with glutathione, an intracellular thiol, while maintaining reactivity with the dithiol tag. This system allows the rapid and specific labeling of intracellular POIs.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In metalloproteins, metal centers serve as active sites for a range of functional purposes and as important structural elements to facilitate protein folding and assembly. It is challenging to observe the reversible unfolding and refolding of metalloproteins because of a loss or decomposition of the metal center. Here, the reversible unfolding–refolding of the iron–sulfur protein rubredoxin was observed directly using single-molecule force spectroscopy. The results demonstrate that the iron can remain attached to the CXXC motif when rubredoxin is unfolded. Upon relaxation, the unfolded rubredoxin can refold into its native holo state with the reconstituted FeS4 center. The possible loss of iron from the unfolded protein prevents rubredoxin from refolding into its native holo state. These results demonstrated that unfolding of rubredoxin is reversible, as long as the iron remains attached, and provide experimental evidence for the iron-priming mechanism for the folding of rubredoxin.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNAzymes, which are sequences of DNA with catalytic activity, have been demonstrated as a potential platform for sensing a wide range of metal ions. Despite their significant promise, cellular sensing using DNAzymes has however been difficult, mainly because of the “always-on” mode of first-generation DNAzyme sensors. To overcome this limitation, a photoactivatable (or photocaged) DNAzyme was designed and synthesized, and its application in sensing ZnII in living cells was demonstrated. In this design, the adenosine ribonucleotide at the scissile position of the 8–17 DNAzyme was replaced by 2′-O-nitrobenzyl adenosine, rendering the DNAzyme inactive and thus allowing its delivery into cells intact, protected from nonspecific degradation within cells. Irradiation at 365 nm restored DNAzyme activity, thus allowing the temporal control over the sensing activity of the DNAzyme for metal ions. The same strategy was also applied to the GR-5 DNAzyme for the detection of PbII, thus demonstrating the possible scope of the method.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A rare example of a one-pot process that involves asymmetric triple relay catalysis is reported. The key step is an asymmetric [1,5] electrocyclic reaction of functionalized ketimines. The substrates for this process were obtained in situ in a two-step process that involved the hydrogenation of nitroarenes with a Pd/C catalyst to yield aryl amines and their subsequent coupling with isatin derivatives in a Brønsted acid catalyzed ketimine formation reaction. The electrocyclization was catalyzed by a bifunctional chiral Brønsted base/hydrogen bond donor catalyst. The one-pot process gave the desired products in good yields and with excellent enantioselectivity.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The generation of oxidants on illuminated photocatalysts and their participation in subsequent reactions are the main basis of the widely investigated photocatalytic processes for environmental remediation and selective oxidation. Here, the generation and the subsequent diffusion of .OH from the illuminated TiO2 surface to the solution bulk were directly observed using a single-molecule detection method and this molecular phenomenon could explain the different macroscopic behavior of anatase and rutile in photocatalysis. The mobile .OH is generated on anatase but not on rutile. Therefore, the photocatalytic oxidation on rutile is limited to adsorbed substrates whereas that on anatase is more facile and versatile owing to the presence of mobile .OH. The ability of anatase to generate mobile .OH is proposed as a previously unrecognized key factor that explains the common observations that anatase has higher activity than rutile for many photooxidative reactions.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Controlling reaction selectivity is an eternal pursuit for chemists working in chemical synthesis. As part of this endeavor, our group has been exploring the possibility of constructing different natural product skeletons from the same simple starting materials by using different catalytic systems. In our previous work, an isoflavanone skeleton was obtained from the annulation of a salicylaldehyde and an alkyne when a gold catalyst was employed. In this paper, it is shown that a coumarin skeleton can be efficiently obtained through an annulation reaction with the same starting materials, that is, terminal alkynes and salicylaldehydes, by simply switching to a rhodium catalyst. A plausible reaction mechanism is proposed for this new annulation based on isotopic substitution experiments.
    Angewandte Chemie International Edition 10/2014;
  • Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermal reaction between XeF2 and excess TiF4 resulted in the unexpected formation of a highly ionized XeII species. The products [Xe2F3][Ti8F33] and [XeF]2[Ti9F38] represent the first examples of [Xe2F3]+ and [XeF]+ compounds, which differ from known XeII salts containing discrete fluoride anions with pentavalent metalloid/metal centers. A new structural type of 2D polyanion [Ti8F33]− and the formation and structure of the novel 1D [Ti9F38]2− are discussed. Both products were characterized by single-crystal X-ray analysis and Raman spectroscopy.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zanamivir, laninamivir, and CS-8958 are three neuraminidase inhibitors that have been clinically used to combat influenza. We report herein a novel organocatalytic route for preparing these agents. Only 13 steps are needed for the assembly of zanamivir and laninamivir from inexpensive D-araboascorbic acid by this synthetic route, which relies heavily on a thiourea-catalyzed enantioselective Michael addition of acetone to tert-butyl (2-nitrovinyl)carbamate and an anti-selective Henry reaction of the resulting Michael adduct with an aldehyde prepared from D-araboascorbic acid. The synthetic procedures are scalable, as evident from the preparation of more than 3.5 g of zanamivir.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypercoordination of main-group elements such as the heavier Group 14 elements (silicon, germanium, tin, and lead) usually requires strong electron-withdrawing ligands and/or donating groups. Herein, we present the synthesis and characterization of two hexaaryltin(IV) dianions in form of their dilithium salts [Li2(thf)2{Sn(2-pyMe)6}] (pyMe=C5H3N-5-Me) (2) and [Li2{Sn(2-pyOtBu)6}] (pyOtBu=C5H3N-6-OtBu) (3). Both complexes are stable in the solid state and solution under inert conditions. Theoretical investigations of compound 2 reveal a significant valence 5s-orbital contribution of the tin atom forming six strongly polarized tin–carbon bonds.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report a method for the rapid and efficient identification of bacteria making use of five probes having fluorescent characteristics (F-array) and subsequent statistical analysis. Eight kinds of bacteria, including normal and multidrug-resistant bacteria, are differentiated successfully. Our easy-to-perform and time-saving method consists of mixing bacteria and probes, recording fluorescent intensity data by automated flow cytometry, and statistical analysis. No washing steps are required in order to identify the different bacteria simultaneously.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poly(mandelic acid) (PMA) is an aryl analogue of poly(lactic acid) (PLA) and a biodegradable analogue of polystyrene. The preparation of stereoregular PMA was realized using a pyridine/mandelic acid adduct (Py⋅MA) as an organocatalyst for the ring-opening polymerization (ROP) of the cyclic O-carboxyanhydride (manOCA). Polymers with a narrow polydispersity index and excellent molecular-weight control were prepared at ambient temperature. These highly isotactic chiral polymers exhibit an enhancement of the glass-transition temperature (Tg) of 15 °C compared to the racemic polymer, suggesting potential future application as high-performance commodity and biomedical materials.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The copper complex [(bztpen)Cu](BF4)2 (bztpen=N-benzyl-N,N′,N′-tris(pyridin-2-ylmethyl)ethylenediamine) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen-generation rate constant (kobs) of over 10000 s−1. A turnover frequency (TOF) of 7000 h−1 cm−2 and a Faradaic efficiency of 96 % were obtained from a controlled potential electrolysis (CPE) experiment with [(bztpen)Cu]2+ in pH 2.5 buffer solution at −0.90 V versus the standard hydrogen electrode (SHE) over two hours using a glassy carbon electrode. A mechanism involving two proton-coupled reduction steps was proposed for the dihydrogen generation reaction catalyzed by [(bztpen)Cu]2+.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cofactor-free oxidases and oxygenases promote and control the reactivity of O2 with limited chemical tools at their disposal. Their mechanism of action is not completely understood and structural information is not available for any of the reaction intermediates. Near-atomic resolution crystallography supported by in crystallo Raman spectroscopy and QM/MM calculations showed unambiguously that the archetypical cofactor-free uricase catalyzes uric acid degradation via a C5(S)-(hydro)peroxide intermediate. Low X-ray doses break specifically the intermediate C5OO(H) bond at 100 K, thus releasing O2 in situ, which is trapped above the substrate radical. The dose-dependent rate of bond rupture followed by combined crystallographic and Raman analysis indicates that ionizing radiation kick-starts both peroxide decomposition and its regeneration. Peroxidation can be explained by a mechanism in which the substrate radical recombines with superoxide transiently produced in the active site.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxetanes offer exciting potential as structural motifs and intermediates in drug discovery and materials science. Here an efficient strategy for the synthesis of oxetane rings incorporating pendant functional groups is described. A wide variety of oxetane 2,2-dicarboxylates were accessed in high yields, including functionalized 3-/4-aryl- and alkyl-substituted oxetanes and fused oxetane bicycles. Enantioenriched alcohols provided enantioenriched oxetanes with complete retention of configuration. The oxetane products were further derivatized, while the ring was maintained intact, thus highlighting their potential as building blocks for medicinal chemistry.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most electrolytes currently used in Li-ion batteries contain halogens, which are toxic. In the search for halogen-free electrolytes, we studied the electronic structure of the current electrolytes using first-principles theory. The results showed that all current electrolytes are based on superhalogens, i.e., the vertical electron detachment energies of the moieties that make up the negative ions are larger than those of any halogen atom. Realizing that several superhalogens exist that do not contain a single halogen atom, we studied their potential as effective electrolytes by calculating not only the energy needed to remove a Li+ ion but also their affinity towards H2O. Several halogen-free electrolytes are identified among which Li(CB11H12) is shown to have the greatest potential.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The detection of nucleic acids (NAs) within micro total analysis systems (μTASs) for point-of-care use is a rapidly developing research area. The efficient isolation of NAs from a raw sample is crucial for these systems to be maximally effective. The use of microfluidics assists in reducing sample sizes and reagent consumption, increases speed, avoids contamination, and enables automation. Through miniaturization into microchips, new techniques have been realized that would be unfavorable and inconvenient to use on a macroscopic scale, but provide an excellent platform for the purification of NAs on a microscopic scale. This Review considers the complexities of NA isolation with miniaturized and microfluidic devices, as well as the considerations when choosing a technique for microfluidic NA isolation, along with their advantages, disadvantages, and potential applications. The techniques presented include using silica-based surfaces, functionalized paramagnetic beads, oligonucleotide-modified polymer surfaces, pH-dependent charged surfaces, Al2O3 membranes, and liquid-phase isolation. This Review provides a basis to develop the chemistry to improve NA isolation and move it toward achieving 100 % efficiencies.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an electrokinetic technique to increase the reaction rate and sensitivity of bead-based assays. We use isotachophoresis (ITP) to preconcentrate and co-focus target molecules and beads into a single ITP zone. The process achieves rapid mixing, stirring, and strongly increases the binding reaction rate. We demonstrate our assay with quantitative detection of 24 nt single-stranded DNA over a dynamic range of three orders of magnitude and multiplexed detection of ten target species per sample. We show that ITP can achieve approximately the same sensitivity as a well-stirred standard reaction in 60-fold reduced reaction time (20 min versus 20 h). Alternately, compared to standard reaction times of 30 min, we show that 20 min ITP hybridization can achieve 5.3-fold higher sensitivity.
    Angewandte Chemie International Edition 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: To fully understand the fundamental properties of light-energy-converting materials, it is important to determine the local atomic configuration of photofunctional centers. In this study, direct imaging of one- and two-Tb-atom emission centers in a two-dimensional Tb-doped Ca2Ta3O10 nanocrystal was carried. The emission centers were located at the Ca sites in the perovskite structure, and no concentration-based quenching was observed even when the emission centers were in close proximity to each other. The relative photoluminescence efficiency for green emission of the nanosheet suspension was 38.1 %. Furthermore, the Tb-doped Ca2Ta3O10 nanocrystal deposited co-catalyst showed high photocatalytic activity for hydrogen production from water (quantum efficiency: 71 % at 270 nm). Tb3+ dopants in the two-dimensional crystal might have the potential to stabilize the charge separation state.
    Angewandte Chemie International Edition 10/2014;