Archives of Insect Biochemistry and Physiology Journal Impact Factor & Information

Publisher: Entomological Society of America, Wiley

Journal description

Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in or related to one of the following subject areas: Endocrinology Development Neurobiology Behavior Pharmacology Nutrition Carbohydrates Lipids Enzymes Proteins Peptides Nucleic Acids Molecular Biology Toxicology. ARCHIVES will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.

Current impact factor: 1.16

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 1.16
2012 Impact Factor 1.515
2011 Impact Factor 1.361
2010 Impact Factor 1.564
2009 Impact Factor 1.381
2008 Impact Factor 1.274
2007 Impact Factor 1.345
2006 Impact Factor 1.474
2005 Impact Factor 1.827
2004 Impact Factor 1.173
2003 Impact Factor 1.8
2002 Impact Factor 1.525
2001 Impact Factor 1.268
2000 Impact Factor 1.159
1999 Impact Factor 1.28
1998 Impact Factor 1.364
1997 Impact Factor 1.246
1996 Impact Factor 1.473
1995 Impact Factor 1.716
1994 Impact Factor 1.669
1993 Impact Factor 1.285
1992 Impact Factor 1.5

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.38
Cited half-life 0.00
Immediacy index 0.13
Eigenfactor 0.00
Article influence 0.37
Website Archives of Insect Biochemistry and Physiology website
Other titles Archives of insect biochemistry and physiology., Supplement., Archives of insect biochemistry and physiology (Online), Archives of insect biochemistry and physiology, Insect biochemistry and physiology
ISSN 1520-6327
OCLC 43007046
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Wiley

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • On a non-profit server
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 08/2015; DOI:10.1002/arch.21251
  • [Show abstract] [Hide abstract]
    ABSTRACT: The small cabbage butterfly, Pieris rapae, is an important pest of cruciferous corps, and Pteromalus puparum is a predominant pupal endoparasitoid wasp of this butterfly. For successful development of parasitoid offspring, female parasitoids usually introduce one or several kinds of maternal factors into the hemocoels during oviposition to suppress host immunity. To investigate the early changes in host immune-related genes following parasitization, we analyzed transcriptomes of parasitized and unparasitized, control, host pupae. Approximately 17.7 and 19.3 million paired-end reads were generated from nonparasitized and parasitized host pupae, and assembled de novo into 45,639 transcripts and 27,659 nonredundant unigenes. The average unigene length was 790 bp. A total 18,377 of 27,659 unigenes were annotated and we identified 557 differentially expressed unigenes in host pupae at 1 h after parasitization, of which 21 were immune-related. Parasitization led to downregulation of most pattern recognition receptors and upregulation of all serine protease inhibitors. The transcirptomic profile of P. rapae is considerably affected by parasitization. This study provides valuable sources for future investigations of the molecular interaction between P. puparum and its host P. rapae. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 08/2015; DOI:10.1002/arch.21250
  • [Show abstract] [Hide abstract]
    ABSTRACT: The yolk protein precursor, vitellogenin (Vg), is absorbed into growing oocytes via receptor-mediated endocytosis for embryonic development. In this study, a Vg receptor (VgR) cDNA of the oriental fruit fly (Bactrocera dorsalis Hendel) was cloned via RT-PCR and RACE (GenBank accession no. KR535603) and its expression analyzed. The BdVgR cDNA has a length of 6,585 bp encoding 1,923 amino acids. It has a conserved motif arrangement with other insect VgRs, and showed high identity to the B. cucurbitae VgR (91.4%). The expression of BdVgR mRNA and proteins was shown in both ovary and fat body. This is the first report on a nonovary-specific VgR from a nonsocial insect. In ovary, the expression of BdVgR mRNA and proteins was inconsistent, with the transcription, but not protein, level high on D0. In fat body, the expression levels of BdVgR mRNA and proteins were high on days 5 and 6. The function of BdVgR in the fat body is not clear. However, it may be involved in reuptake of yolk proteins from the hemolymph as an amino acid reservoir or as autocrine regulation of yolk protein expression. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 08/2015; DOI:10.1002/arch.21252
  • [Show abstract] [Hide abstract]
    ABSTRACT: A neuronal morphological phenotype can be induced in cultured Spodoptera frugiperda insect cells (Sf21) by supplementing serum-containing media with 20-hydroxyecdysone (20-HE) and/or insulin. In this study, the primary objectives were to determine any role of ion channels in mediating the morphological change in cells treated with 20-HE and insulin, and whether serum was required to observe this effect. Results showed serum-free media also induced growth of processes in Sf21 cells, but at a lower percentage than that found previously in cells bathed in serum-containing media. Veratridine, a sodium channel activator, increased cell survival when applied in combination with 20-HE to Sf21 cells, and the effect was blocked by tetrodotoxin (1 μM) a known sodium channel blocker. Cobalt, a calcium channel blocker, showed significant inhibition of cell process growth when applied in combination with both 20-HE and 20-HE plus veratridine. Cobalt also showed significant inhibition of cell process growth when applied in combination with insulin. Thus, some type of sodium channel, as well as a mechanism for transmembrane calcium ion movement, are apparently expressed in Sf21 cells and are involved in the differentiation process. These cell lines may be used in a wide variety of endeavors, including the screening of insecticides, as well as foster basic studies of neurodevelopment and ecdysone action. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 07/2015; DOI:10.1002/arch.21249
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 06/2015; DOI:10.1002/arch.21248
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ectoparasitoids inject venom into hemolymph during oviposition. We determined the influence of envenomation by the parasitoid, Habrobracon hebetor, on the hemocytes of its larval host, Galleria mellonella. An increase in both intracellular Са(2+) content and phospholipase C activity of the host hemocytes was recorded during 2 days following envenomation by the parasitoid. The decreased hemocyte viability was detected 1, 2, and 24 h after the envenomation. Injecting of the crude venom (final protein concentration 3 μg/ml) into the G. mellonella larvae led to the reduced hemocyte adhesion. The larval envenomation caused a decrease in transmembrane potential of the hemocytes. These findings document the suppression of hemocytic immune effectors in the parasitized host larvae. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 06/2015; DOI:10.1002/arch.21247
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitin, a small protein consisting of 76 amino acids, acts in protein degradation, DNA repair, signal transduction, transcriptional regulation, and receptor control through endocytosis. Using proteomics, we compared the differentially ubiquitinated proteins between a deltamethrin-resistant (DR) strain and a deltamethrin-sensitive (DS) strain in third-instar larvae of the diamondback moth. We used polyubiquitin affinity beads to enrich ubiquitinated proteins and then performed one-dimensional SDS-PAGE separation and mass spectrometric identification. In the DR strain, We found 17 proteins that were upregulated (relative to the DS strain), including carbonic anhydrase family members, ADP ribosylation factor 102F CG11027-PA, protein kinase 61C, phospholipase A2 , dihydrolipoamide dehydrogenase, tyrosine hydroxylase, and heat shock proteins, and five proteins that were downregulated in the DS strain, including carboxylesterase and DNA cytosine-5 methyltransferase. These results were also verified by qPCR. The differentially ubiquitinated proteins/enzymes were mainly responsible for protein binding, catalytic activity, and molecular transducer activity. These results improve our understanding of the relationship between protein ubiquitination and the deltamethrin stress response. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 05/2015; DOI:10.1002/arch.21245
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although lysis of invading organisms is a major innate form of immunity used by invertebrates, it remains unclear whether herbivorous insects have hemolysin or not. To address this general question, we tested the hemolytic (HL) activity of the hemolymph and tissue extracts from various stages of the polyphagous insect Helicoverpa armigera (Hübner) against the erythrocytes from chicken, duck, and rabbit. An HL activity was identified in the hemolymph of H. armigera larvae. Further studies demonstrated that the HL activity is proteinaceous as it was precipitable by deproteinizing agents. Hemolysins were found in Helicoverpa egg, larva, pupa, and adult, but the activity was higher in feeding larvae than in molting or newly molted larvae. Hemolysins were distributed among a variety of larval tissues including salivary gland, fat body, epidermis, midgut, or testes, but the highest activity was found in salivary gland and fat body. Relative to nonparasitized larvae, parasitization of H. armigera larvae by the endoparasitoid Campoletis chlorideae Uchida induced a 3.4-fold increase in the HL activity in the plasma of parasitized host at day two postparasitization. The present study shows the presence of a parasitoid inducible HL factor in the parasitized insect. The HL activity increased significantly in H. armigera larvae at 12 and 24 h postinjection with Escherichia coli. We infer the HL factor(s) is inducible or due to de novo synthesis, which means that the HL factor(s) is associated with insect immune response by inhibiting or clearance of invading organisms. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 04/2015; DOI:10.1002/arch.21241
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dastarcus helophoroides is an ectoparasitoid beetle of Monochamus alternatus, and the parasitism by D. helophoroides larvae remarkably influenced on the immune responses of M. alternatus larvae in many aspects. The hemolymph melanization reactions in the hosts were inhibited 1 h and 24 h postparasitization. The phenoloxidase activities of hemolymph were significantly stimulated 4 h postparasitization and inhibited 12 h postparasitization, and back to control level. The antibacterial activities of hemolymph in the parasitized hosts were significantly lower than that in the unparasitized ones 1 h postparasitization. By 72 h postparasitism, the total hemocyte numbers of the parasitized larvae declined to not more than one-seconds of the number collected from the unparasitized larvae. All sampled hemolymph held the capability of nodulation, and there were fluctuations in the number of nodules the hemocytes made. However, there were no significant differences between unparasitized and parasitized larvae at each time point in the hemagglutination activity and the ratios of spreading hemocytes. In conclusion, D. helophoroides larvae could regulate M. alternatus immune system and resulted in the changes in host immune responses. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 04/2015; DOI:10.1002/arch.21242
  • [Show abstract] [Hide abstract]
    ABSTRACT: In insects, glutathione S-transferases (GSTs) play critical roles in the detoxification of various insecticides, resulting in insecticide resistance. The rice leaffolder, Cnaphalocrocis medinalis, is an economically important pest of rice in Asia. GST genes have not been largely identified in this insect species. In the present study, by searching the transcriptome dataset, 25 candidate GST genes were identified in C. medinalis for the first time. Of these, 23 predicted GST proteins fell into five cytosolic classes (delta, epsilon, omega, sigma, and zeta), and two were assigned to the "unclassified" subgroup. Real-time quantitative PCR analysis showed that these GST genes were differentially expressed in various tissues, including the midgut, Malpighian tubules, and fat body of larvae, and the antenna, abdomen, and leg of adults, indicating diversified functions for these genes. Transcription levels of CmGSTd2, CmGSTe6, and CmGSTe7 increased significantly in larvae following exposure to chlorpyrifos, suggesting that these GST genes could be involved in the detoxification of this insecticide. The results of our study pave the way to a better understanding of the detoxification system of C. medinalis. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 04/2015; DOI:10.1002/arch.21240
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salivary gland secretion is altered in Drosophila embryos with loss of function of the sage gene. Saliva has a reduced volume and an increased electron density according to transmission electron microscopy, resulting in regions of tube dilation and constriction with intermittent tube closure. However, the precise functions of Bmsage in silkworm (Bombyx mori) are unknown, although its sequence had been deposited in SilkDB. From this, Bmsage is inferred to be a transcription factor that regulates the synthesis of silk fibroin and interacts with another silk gland-specific transcription factor, namely, silk gland factor-1. In this study, we introduced a germline mutation of Bmsage using the Cas9/sgRNA system, a genome-editing technology, resulting in deletion of Bmsage from the genome of B. mori. Of the 15 tested samples, seven displayed alterations at the target site. The mutagenesis efficiency was about 46.7% and there were no obvious off-target effects. In the screened homozygous mutants, silk glands developed poorly and the middle and posterior silk glands (MSG and PSG) were absent, which was significantly different from the wild type. The offspring of G0 mosaic silkworms had indel mutations causing 2- or 9-bp deletions at the target site, but exhibited the same abnormal silk gland structure. Mutant larvae containing different open-reading frames of Bmsage had the same silk gland phenotype. This illustrated that the mutant phenotype was due to Bmsage knockout. We conclude that Bmsage participates in embryonic development of the silk gland. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 04/2015; DOI:10.1002/arch.21244
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostaglandin E2 (PGE2 ) mediates immune responses of the beet armyworm, Spodoptera exigua, including oenocytoid cell lysis (a class of lepidopteran hemocytes: OCL) via its specific membrane receptor to release inactive prophenoloxidase (PPO) into hemolymph. PPO is activated into phenoloxidase in the plasma to play crucial roles in the immune responses of S. exigua. The mechanism of OCL has not been elucidated, however we posed the hypothesis that a rapid accumulation of sodium ions within the oenocytoids allows a massive influx of water by the ion gradient, which leads to the cell lysis. It remains unclear which sodium channel is responsible for the OCL in response to PGE2 . This study identified a specific sodium channel called sodium-potassium-chloride cotransporter 1 (Se-NKCC1) expressed in hemocytes of S. exigua and analyzed its function in the OCL in response to PGE2 . Se-NKCC1 encodes a basic membrane protein (pI value = 8.445) of 1,066 amino acid residues, which contains 12 putative transmembrane domains. Se-NKCC1 was expressed in all developmental stages and tissues. qPCR showed that bacterial challenge significantly induced its expression. A specific inhibitor of NKCC, bumetanide, prevented the OCL in a dose-dependent manner. When RNA interference (RNAi) using double-stranded RNA specific to Se-NKCC1 suppressed its expression, the OCL and PPO activation were significantly inhibited in response to PGE2 . The RNAi treatment also reduced nodule formation to bacterial challenge. These results suggest that Se-NKCC1 is associated with OCL by facilitating inward transport of ions in response to PGE2 . © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 04/2015; DOI:10.1002/arch.21238
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insect cellular immune responses include encapsulation, nodule formation, and phagocytosis. Hemichannels and gap junctions are involved in these cellular actions. Innexins (Inxs: analogous to the vertebrate connexins) form hemichannels and gap junctions, but the molecular mechanisms underlying their biology is still unclear. In this article, we reported a steady-state level of Inxs (SpliInxs) in hemocytes of Spodoptera litura, which formed nonfunctional hemichannels on the cell surface to maintain normal metabolism. We also reported that two innnexins (SpliInx2 and SpliInx3) were expressed significantly higher in hemocytes compared to other tissues, suggesting that they play important roles in hemocytes. Amino acid analysis found that two cysteine residues in two extracellular loops provided the capability for SpliInx2 and SpliInx3 hemichannels to dock into gap junctions. Western blotting demonstrated that both extracellular and intracellular loops of SpliInx3 and the extracellular loops of SpliInx2 might undergo posttranslational modification during the formation of a steady-state hemichannel. During hemichannel formation, SpliInx2 presented as one isoform, while SpliInx3 presented as three isoforms. These results provide fundamental knowledge for further study of how steady-state levels of SpliInxs are dynamically adjusted to perform cellular immune responses under immune challenge. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 04/2015; DOI:10.1002/arch.21243
  • [Show abstract] [Hide abstract]
    ABSTRACT: The induction of apoptosis by azadirachtin, a well-known botanical tetranortriterpenoid isolated from the neem tree (Azadirachta indica A. Juss) and other members of the Meliaceae, was investigated in Spodoptera frugiperda cultured cell line (Sf9). Morphological changes in Sf9 cells treated by various concentrations of azadirachtin were observed at different times under light microscopy. Morphological and biochemical analysis indicated that Sf9 cells treated by 1.5 μg/mL azadirachtin showed typical morphological changes, which were indicative of apoptosis and a clear DNA ladder. The flow cytometry analysis showed the apoptosis rate reached a maximum value of 32.66% at 24 h with 1.5 μg/mL azadirachtin in Sf9 cells. The inhibition of Sf9 cell proliferation suggested that the effect of azadirachtin was dose dependent and the EC50 at 48 and 72 h was 2.727 × 10(-6) and 6.348 × 10(-9) μg/mL, respectively. The treatment of azadirachtin in Sf9 cells could significantly increase the activity of Sf caspase-1, but showed no effect on the activity of Topo I, suggesting that the apoptosis induced by azadirachtinin Sf9 cells is through caspase-dependent pathway. These results provided not only a series of morphological, biochemical, and toxicological comprehensive evidences for induction of apoptosis by azadirachtin, but also a reference model for screening insect cell apoptosis inducers from natural compounds. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 04/2015; DOI:10.1002/arch.21233
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA(+) cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH-1(+) cells, and renal cells. The G3 LEA(+) neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA(+) sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA(+) sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp. © 2015 Wiley Periodicals, Inc.
    Archives of Insect Biochemistry and Physiology 03/2015; 89(3). DOI:10.1002/arch.21234