Statistical Methods in Medical Research (STAT METHODS MED RES)

Publisher: SAGE Publications

Journal description

Statistical Methods in Medical Research is the leading vehicle for review articles in all the main areas of medical statistics and is an essential reference for all medical statisticians. It is particularly useful for medical researchers dealing with data and provides a key resource for medical and statistical libraries, as well as pharmaceutical companies. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. As techniques are constantly adopted by statisticians working both inside and outside the medical environment, this review journal aims to satisfy the increasing demand for accurate and up-to-the-minute information.

Current impact factor: 4.47

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 4.472
2013 Impact Factor 2.957
2012 Impact Factor 2.364
2011 Impact Factor 2.443
2010 Impact Factor 1.768
2009 Impact Factor 2.569
2008 Impact Factor 2.177
2007 Impact Factor 1.492
2006 Impact Factor 1.377
2005 Impact Factor 1.327
2004 Impact Factor 2.583
2003 Impact Factor 1.857
2002 Impact Factor 1.553
2001 Impact Factor 1.886

Impact factor over time

Impact factor

Additional details

5-year impact 3.73
Cited half-life >10.0
Immediacy index 1.28
Eigenfactor 0.01
Article influence 2.61
Website Statistical Methods in Medical Research website
Other titles Statistical methods in medical research (Online)
ISSN 1477-0334
OCLC 42423902
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

SAGE Publications

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors retain copyright
    • Pre-print on any website
    • Author's post-print on author's personal website, departmental website, institutional website or institutional repository
    • On other repositories including PubMed Central after 12 months embargo
    • Publisher copyright and source must be acknowledged
    • Publisher's version/PDF cannot be used
    • Post-print version with changes from referees comments can be used
    • "as published" final version with layout and copy-editing changes cannot be archived but can be used on secure institutional intranet
    • Must link to publisher version with DOI
    • Publisher last reviewed on 29/07/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).
    Statistical Methods in Medical Research 11/2015; DOI:10.1177/0962280215611702
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multi-type recurrent event data occur frequently in longitudinal studies. Dependent termination may occur when the terminal time is correlated to recurrent event times. In this article, we simultaneously model the multi-type recurrent events and a dependent terminal event, both with nonparametric covariate functions modeled by B-splines. We develop a Bayesian multivariate frailty model to account for the correlation among the dependent termination and various types of recurrent events. Extensive simulation results suggest that misspecifying nonparametric covariate functions may introduce bias in parameter estimation. This method development has been motivated by and applied to the lipid-lowering trial component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial.
    Statistical Methods in Medical Research 11/2015; DOI:10.1177/0962280215613378
  • [Show abstract] [Hide abstract]
    ABSTRACT: Joint mixed modeling is an attractive approach for the analysis of a scalar response measured at a primary endpoint and longitudinal measurements on a covariate. In the standard Bayesian analysis of these models, measurement error variance and the variance/covariance of random effects are a priori modeled independently. The key point is that these variances cannot be assumed independent given the total variation in a response. This article presents a joint Bayesian analysis in which these variance terms are a priori modeled jointly. Simulations illustrate that analysis with multivariate variance prior in general lead to reduced bias (smaller relative bias) and improved efficiency (smaller interquartile range) in the posterior inference compared with the analysis with independent variance priors.
    Statistical Methods in Medical Research 11/2015; DOI:10.1177/0962280215615003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most diagnostic accuracy measures and criteria for selecting optimal cut-points are only applicable to diseases with binary or three stages. Currently, there exist two diagnostic measures for diseases with general k stages: the hypervolume under the manifold and the generalized Youden index. While hypervolume under the manifold cannot be used for cut-points selection, generalized Youden index is only defined upon correct classification rates. This paper proposes a new measure named maximum absolute determinant for diseases with k stages ([Formula: see text]). This comprehensive new measure utilizes all the available classification information and serves as a cut-points selection criterion as well. Both the geometric and probabilistic interpretations for the new measure are examined. Power and simulation studies are carried out to investigate its performance as a measure of diagnostic accuracy as well as cut-points selection criterion. A real data set from Alzheimer's Disease Neuroimaging Initiative is analyzed using the proposed maximum absolute determinant.
    Statistical Methods in Medical Research 10/2015; DOI:10.1177/0962280215611631
  • [Show abstract] [Hide abstract]
    ABSTRACT: Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
    Statistical Methods in Medical Research 10/2015; DOI:10.1177/0962280215609948
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asymptotic tests are commonly used for comparing two binomial proportions when the sample size is sufficiently large. However, there is no consensus on the most powerful test. In this paper, we clarify this issue by comparing the power functions of three popular asymptotic tests: the Pearson's χ(2) test, the likelihood-ratio test and the odds-ratio based test. Considering Taylor decompositions under local alternatives, the comparisons lead to recommendations on which test to use in view of both the experimental design and the nature of the investigated signal. We show that when the design is balanced between the two binomials, the three tests are equivalent in terms of power. However, when the design is unbalanced, differences in power can be substantial and the choice of the most powerful test also depends on the value of the parameters of the two compared binomials. We further investigated situations where the two binomials are not compared directly but through tag binomials. In these cases of indirect association, we show that the differences in power between the three tests are enhanced with decreasing values of the parameters of the tag binomials. Our results are illustrated in the context of genetic epidemiology where the analysis of genome-wide association studies provides insights regarding the low power for detecting rare variants.
    Statistical Methods in Medical Research 10/2015; DOI:10.1177/0962280215608528
  • [Show abstract] [Hide abstract]
    ABSTRACT: Standardized likelihood ratio test (SLRT) for testing the equality of means of several log-normal distributions is proposed. The properties of the SLRT and an available modified likelihood ratio test (MLRT) and a generalized variable (GV) test are evaluated by Monte Carlo simulation and compared. Evaluation studies indicate that the SLRT is accurate even for small samples, whereas the MLRT could be quite liberal for some parameter values, and the GV test is in general conservative and less powerful than the SLRT. Furthermore, a closed-form approximate confidence interval for the common mean of several log-normal distributions is developed using the method of variance estimate recovery (MOVER), and compared with the generalized confidence interval with respect to coverage probabilities and precision. Simulation studies indicate that the proposed confidence interval is accurate and better than the generalized confidence interval in terms of coverage probabilities. The methods are illustrated using two examples.
    Statistical Methods in Medical Research 10/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Time-dependent covariates can be modeled within the Cox regression framework and can allow both proportional and nonproportional hazards for the risk factor of research interest. However, in many areas of health services research, interest centers on being able to estimate residual longevity after the occurrence of a particular event such as stroke. The survival trajectory of patients experiencing a stroke can be potentially influenced by stroke type (hemorrhagic or ischemic), time of the stroke (relative to time zero), time since the stroke occurred, or a combination of these factors. In such situations, researchers are more interested in estimating lifetime lost due to stroke rather than merely estimating the relative hazard due to stroke. To achieve this, we propose an ensemble approach using the generalized gamma distribution by means of a semi-Markov type model with an additive hazards extension. Our modeling framework allows stroke as a time-dependent covariate to affect all three parameters (location, scale, and shape) of the generalized gamma distribution. Using the concept of relative times, we answer the research question by estimating residual life lost due to ischemic and hemorrhagic stroke in the chronic dialysis population.
    Statistical Methods in Medical Research 09/2015; DOI:10.1177/0962280215605107
  • [Show abstract] [Hide abstract]
    ABSTRACT: In multiple fields of study, time series measured at high frequencies are used to estimate population curves that describe the temporal evolution of some characteristic of interest. These curves are typically nonlinear, and the deviations of each series from the corresponding curve are highly autocorrelated. In this scenario, we propose a procedure to compare the response curves for different groups at specific points in time. The method involves fitting the curves, performing potentially hundreds of serially correlated tests, and appropriately adjusting the overall alpha level of the tests. Our motivating application comes from psycholinguistics and the visual world paradigm. We describe how the proposed technique can be adapted to compare fixation curves within subjects as well as between groups. Our results lead to conclusions beyond the scope of previous analyses.
    Statistical Methods in Medical Research 09/2015; DOI:10.1177/0962280215607411
  • [Show abstract] [Hide abstract]
    ABSTRACT: The marginalized two-part (MTP) model for semicontinuous data proposed by Smith et al. provides direct inference for the effect of covariates on the marginal mean of positively continuous data with zeros. This brief note addresses mischaracterizations of the MTP model by Gebregziabher et al. Additionally, the MTP model is extended to incorporate the three-parameter generalized gamma distribution, which takes many well-known distributions as special cases, including the Weibull, gamma, inverse gamma, and log-normal distributions. © The Author(s) 2015.
    Statistical Methods in Medical Research 09/2015; DOI:10.1177/0962280215602290
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Tobit model, also known as a censored regression model to account for left- and/or right-censoring in the dependent variable, has been used in many areas of applications, including dental health, medical research and economics. The reported Tobit model coefficient allows estimation and inference of an exposure effect on the latent dependent variable. However, this model does not directly provide overall exposure effects estimation on the original outcome scale. We propose a direct-marginalization approach using a reparameterized link function to model exposure and covariate effects directly on the truncated dependent variable mean. We also discuss an alternative average-predicted-value, post-estimation approach which uses model-predicted values for each person in a designated reference group under different exposure statuses to estimate covariate-adjusted overall exposure effects. Simulation studies were conducted to show the unbiasedness and robustness properties for both approaches under various scenarios. Robustness appears to diminish when covariates with substantial effects are imbalanced between exposure groups; we outline an approach for model choice based on information criterion fit statistics. The methods are applied to the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort study to assess associations between obesity and cognitive function in the non-Hispanic white participants. © The Author(s) 2015.
    Statistical Methods in Medical Research 09/2015; DOI:10.1177/0962280215602716
  • [Show abstract] [Hide abstract]
    ABSTRACT: The receiver operating characteristic (ROC) curve is frequently used as a measure of accuracy of continuous markers in diagnostic tests. The area under the ROC curve (AUC) is arguably the most widely used summary index for the ROC curve. Although the small sample size scenario is common in medical tests, a comprehensive study of small sample size properties of various methods for the construction of the confidence/credible interval (CI) for the AUC has been by and large missing in the literature. In this paper, we describe and compare 29 non-parametric and parametric methods for the construction of the CI for the AUC when the number of available observations is small. The methods considered include not only those that have been widely adopted, but also those that have been less frequently mentioned or, to our knowledge, never applied to the AUC context. To compare different methods, we carried out a simulation study with data generated from binormal models with equal and unequal variances and from exponential models with various parameters and with equal and unequal small sample sizes. We found that the larger the true AUC value and the smaller the sample size, the larger the discrepancy among the results of different approaches. When the model is correctly specified, the parametric approaches tend to outperform the non-parametric ones. Moreover, in the non-parametric domain, we found that a method based on the Mann-Whitney statistic is in general superior to the others. We further elucidate potential issues and provide possible solutions to along with general guidance on the CI construction for the AUC when the sample size is small. Finally, we illustrate the utility of different methods through real life examples.
    Statistical Methods in Medical Research 09/2015; DOI:10.1177/0962280215602040
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many non-experimental studies use propensity-score methods to estimate causal effects by balancing treatment and control groups on a set of observed baseline covariates. Full matching on the propensity score has emerged as a particularly effective and flexible method for utilizing all available data, and creating well-balanced treatment and comparison groups. However, full matching has been used infrequently with binary outcomes, and relatively little work has investigated the performance of full matching when estimating effects on binary outcomes. This paper describes methods that can be used for estimating the effect of treatment on binary outcomes when using full matching. It then used Monte Carlo simulations to evaluate the performance of these methods based on full matching (with and without a caliper), and compared their performance with that of nearest neighbour matching (with and without a caliper) and inverse probability of treatment weighting. The simulations varied the prevalence of the treatment and the strength of association between the covariates and treatment assignment. Results indicated that all of the approaches work well when the strength of confounding is relatively weak. With stronger confounding, the relative performance of the methods varies, with nearest neighbour matching with a caliper showing consistently good performance across a wide range of settings. We illustrate the approaches using a study estimating the effect of inpatient smoking cessation counselling on survival following hospitalization for a heart attack. © The Author(s) 2015.
    Statistical Methods in Medical Research 09/2015; DOI:10.1177/0962280215601134
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rank-based sampling designs are widely used in situations where measuring the variable of interest is costly but a small number of sampling units (set) can be easily ranked prior to taking the final measurements on them and this can be done at little cost. When the variable of interest is binary, a common approach for ranking the sampling units is to estimate the probabilities of success through a logistic regression model. However, this requires training samples for model fitting. Also, in this approach once a sampling unit has been measured, the extra rank information obtained in the ranking process is not used further in the estimation process. To address these issues, in this paper, we propose to use the partially rank-ordered set sampling design with multiple concomitants. In this approach, instead of fitting a logistic regression model, a soft ranking technique is employed to obtain a vector of weights for each measured unit that represents the probability or the degree of belief associated with its rank among a small set of sampling units. We construct an estimator which combines the rank information and the observed partially rank-ordered set measurements themselves. The proposed methodology is applied to a breast cancer study to estimate the proportion of patients with malignant (cancerous) breast tumours in a given population. Through extensive numerical studies, the performance of the estimator is evaluated under various concomitants with different ranking potentials (i.e. good, intermediate and bad) and tie structures among the ranks. We show that the precision of the partially rank-ordered set estimator is better than its counterparts under simple random sampling and ranked set sampling designs and, hence, the sample size required to achieve a desired precision is reduced. © The Author(s) 2015.
    Statistical Methods in Medical Research 08/2015; DOI:10.1177/0962280215601458