Computer Methods in Biomechanics and Biomedical Engineering (COMPUT METHOD BIOMEC)

Publisher: Taylor & Francis

Journal description

The primary aims of the journal are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering, and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. The journal will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future. High quality research articles form the main body of the journal. These contributed papers will cover both the engineering and clinical aspects of computer methods in biomedical engineering. Topics covered include the mechanical response of bone and bone/tissue/ implant analysis, modelling of biomaterials, material identification, human body impact, computer assisted surgery, surgical simulation, computer animation, and medical imaging. Dental mechanics, biofluids, cardiovascular mechanics, soft-tissue modelling, and joint/ ligament mechanics are also topics of primary importance. As well as providing a forum where advances in these complex areas can be published and discussed in open academic debate, the journal also contains review and feature articles, technical notes and short communications and a news and reviews section.

Current impact factor: 1.79

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 1.793
2012 Impact Factor 1.393
2011 Impact Factor 0.849
2010 Impact Factor 1.565
2009 Impact Factor 1.454
2008 Impact Factor 0.572
2007 Impact Factor 0.779

Impact factor over time

Impact factor
Year

Additional details

5-year impact 1.64
Cited half-life 4.60
Immediacy index 0.47
Eigenfactor 0.00
Article influence 0.56
Website Computer Methods in Biomechanics and Biomedical Engineering website
Other titles Computer methods in biomechanics and biomedical engineering (Online)
ISSN 1476-8259
OCLC 50515384
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • On author's personal website or departmental website immediately
    • On institutional repository or subject-based repository after either 12 months embargo
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • The publisher will deposit in on behalf of authors to a designated institutional repository including PubMed Central, where a deposit agreement exists with the repository
    • STM: Science, Technology and Medicine
    • Publisher last contacted on 25/03/2014
    • This policy is an exception to the default policies of 'Taylor & Francis'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: While locking plate fixation is becoming increasingly popular for complex and osteoporotic fractures, for many indications compression plating remains the standard choice. This study compares the mechanical behaviour of the more recent locking compression plate (LCP) device, with the traditional dynamic compression plates (DCPs) in bone of varying quality using finite element modelling. The bone properties considered include orthotropy, inhomogeneity, cortical thinning and periosteal apposition associated with osteoporosis. The effect of preloads induced by compression plating was included in the models. Two different fracture scenarios were modelled: one with complete reduction and one with a fracture gap. The results show that the preload arising in DCPs results in large principal strains in the bone all around the perimeter of the screw hole, whereas for LCPs large principal strains occur primarily on the side of the screw proximal to the load. The strains within the bone produced by the two screw types are similar in healthy bone with a reduced fracture gap; however, the DCP produces much larger strains in osteoporotic bone. In the presence of a fracture gap, the DCP results in a considerably larger region with high tensile strains and a slightly smaller region with high compressive strains. These findings provide a biomechanical basis for the reported improved performance of locking plates in poorer bone quality.
    Computer Methods in Biomechanics and Biomedical Engineering 12/2015; 19(16-1):doi: 10.1080/10255842.2014.974580. DOI:10.1080/10255842.2014.974580
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blunt impact on the eye could results in lens capsular rupture that allows foreign substances to enter into the lens and leads to cataract formation. This paper aimed to investigate the mechanism of lens capsular rupture using finite element (FE) method. A FE model of the human eye was developed to simulate dynamic response of the lens capsule to a BB (a standard 4.5-mm-diameter pellet) impact. Sensitivity studies were conducted to evaluate the effect of the parameters on capsular rupture, including the impact velocity, the elastic modulus of the lens, the thickness and the elastic modulus of the lens capsule. The results indicated that the lens was subjected to anterior compression and posterior intension when the eye was stricken by a BB pellet. The strain on the posterior capsule (0.392) was almost twice as much as that on the anterior capsule (0.207) at an impact velocity of 20 m/s. The strain on the capsule was proportional to the impact velocity, while the capsular strain showed no significant change when the lens modulus elastic varied with age. The findings confirmed that blunt traumatic capsular rupture is the result of shockwave propagation throughout the eye. The posterior capsule is subjected to greater tension in blunt trauma, which is the main cause that ruptures are more commonly found on the posterior capsule than the anterior capsule. Also, thinner thickness and lower elastic modulus would contribute to the posterior capsular rupture.
    Computer Methods in Biomechanics and Biomedical Engineering 06/2015; 18(8):914-21. DOI:10.1080/10255842.2014.975798
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preterm birth is a strong contributor to perinatal mortality, and preterm infants that survive are at risk for long-term morbidities. During most of pregnancy, appropriate mechanical function of the cervix is required to maintain the developing fetus in utero. Premature cervical softening and subsequent cervical shortening are hypothesized to cause preterm birth. Presently, there is a lack of understanding of the structural and material factors that influence the mechanical function of the cervix during pregnancy. In this study we build finite element models of the pregnant uterus, cervix, and fetal membrane based on magnetic resonance imagining data in order to examine the mechanical function of the cervix under the physiologic loading conditions of pregnancy. We calculate the mechanical loading state of the cervix for two pregnant patients: 22 weeks gestational age with a normal cervical length and 28 weeks with a short cervix. We investigate the influence of (1) anatomical geometry, (2) cervical material properties, and (3) fetal membrane material properties, including its adhesion properties, on the mechanical loading state of the cervix under physiologically relevant intrauterine pressures. Our study demonstrates that membrane-uterus interaction, cervical material modeling, and membrane mechanical properties are factors that must be deliberately and carefully handled in order to construct a high quality mechanical simulation of pregnancy.
    Computer Methods in Biomechanics and Biomedical Engineering 05/2015; DOI:10.1080/10255842.2015.1033163
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many previous studies, both in vitro and with model simulations, have been conducted in an attempt to reach a full understanding of how the different design parameters of an endodontically restored tooth affect its mechanical strength. However, differences in the experimental set-up or modelling conditions and the limited number of parameters studied in each case prevent us from obtaining clear conclusions about the real significance of each parameter. In this work, a new approach is proposed for this purpose based on the combination of a validated three-dimensional parametric biomechanical model of the restored tooth and statistical analysis using full factorial analysis of variance. A two-step approach with two virtual tests (with, respectively, 128 and 81 finite element models) was used in the present work to study the effect of several design parameters on the strength of a restored incisor, using full factorial designs. Within the limitations of this study, and for cases where the parameters are within the ranges that were tested, the conclusions indicate that the material of the post is the most significant factor as far as its strength is concerned, the use of a low Young's modulus being preferable for this component. Once the post material has been chosen, the geometry of the post is of less importance than the Young's modulus selected for the core or, especially, for the crown.
    Computer Methods in Biomechanics and Biomedical Engineering 04/2015; DOI:10.1080/10255842.2015.1034116
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visualization and analysis of the rodent spinal cord subject to experimental spinal cord injury (SCI) has almost completely been limited to naked-eye observations, and a single measure of gross spinal cord motion due to injury. This study introduces a novel method which utilizes MRI to quantify the deformation of the rodent spinal cord due to imposed, clinically-relevant injuries - specifically, cervical contusion and dislocation mechanisms. The image registration methods were developed using the Advanced Normalization Tools package, which incorporate rigid, affine and deformable registration steps. The proposed method is validated against a fiducial-based, 'gold-standard' measure of spinal cord tissue motion. The validation analysis yielded accuracy (and precision) values of 62 μm (49 μm), 73 μm (79 μm) and 112 μm (110 μm), for the medio-lateral, dorso-ventral and cranio-caudal directions, respectively. The internal morphological change of the spinal cord has never before been quantified, experimentally. This study demonstrates the capability of this method and its potential for future application to in vivo rodent models of SCI.
    Computer Methods in Biomechanics and Biomedical Engineering 04/2015; DOI:10.1080/10255842.2015.1032944
  • [Show abstract] [Hide abstract]
    ABSTRACT: Smile esthetics has become increasingly important for orthodontic patients, thus prediction of post-treatment smile is necessary for a perfect treatment plan. In this study, with a combination of three-dimensional craniofacial data from the cone beam computed tomography and color-encoded structured light system, a novel method for smile prediction was proposed based on facial expression transfer, in which dynamic facial expression was interpreted as a matrix of facial depth changes. Data extracted from the pre-treatment smile expression record were applied to the post-treatment static model to realize expression transfer. Therefore smile esthetics of the patient after treatment could be evaluated in pre-treatment planning procedure. The positive and negative mean values of error for prediction accuracy were 0.9 and - 1.1 mm respectively, with the standard deviation of ± 1.5 mm, which is clinically acceptable. Further studies would be conducted to reduce the prediction error from both the static and dynamic sides as well as to explore automatically combined prediction from the two sides.
    Computer Methods in Biomechanics and Biomedical Engineering 04/2015; DOI:10.1080/10255842.2015.1025767
  • [Show abstract] [Hide abstract]
    ABSTRACT: A reliable intravenous (IV) access into the upper extremity veins requires the insertion of a temporary short peripheral catheter (SPC). This so common procedure is, however, associated with a risk of developing short peripheral catheter thrombophlebitis (SPCT) which causes distress and potentially prolongs patient hospitalization. We have developed and studied a biomechanical SPC-vein computational model during an IV procedure, and explored the biomechanical effects of repeated IV episodes on onset and reoccurrences of SPCT. The model was used to determine the effects of different insertion techniques as well as inter-patient biological variability on the catheter-vein wall contact pressures and wall deformations. We found that the maximal pressure exerted upon the vein wall was inhomogeneously distributed, and that the bending region was exposed to significantly greater pressures and deformations. The maximal exerted contact pressure on the inner vein's wall was 2938 Pa. The maximal extent of the SPC penetration into the vein wall reached 3.6 μm, which corresponds to approximately 100% of the average height of the inner layer, suggesting local squashing of endothelial cells at the contact site. The modelling describes a potential biomechanical damage pathway that can explain the reoccurrence of SPCT.
    Computer Methods in Biomechanics and Biomedical Engineering 04/2015; DOI:10.1080/10255842.2015.1024667
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant-bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.
    Computer Methods in Biomechanics and Biomedical Engineering 04/2015; DOI:10.1080/10255842.2015.1005079
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with both experimental and higher order numerical results previously reported in the literature. Furthermore, the RSM is indicated to provide the most accurate prediction over much of the flow, due to its ability to more correctly account for three-dimensional effects. Finally, the clinical relevance of the results is reported along with a discussion on the impact of such modelling uncertainties.
    Computer Methods in Biomechanics and Biomedical Engineering 03/2015; DOI:10.1080/10255842.2015.1015527
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to determine how marker spacing, noise, and joint translations affect joint angle calculations using both a hierarchical and a six degrees-of-freedom (6DoF) marker set. A simple two-segment model demonstrates that a hierarchical marker set produces biased joint rotation estimates when sagittal joint translations occur whereas a 6DoF marker set mitigates these bias errors with precision improving with increased marker spacing. These effects were evident in gait simulations where the 6DoF marker set was shown to be more accurate at tracking axial rotation angles at the hip, knee, and ankle.
    Computer Methods in Biomechanics and Biomedical Engineering 03/2015; DOI:10.1080/10255842.2015.1006208
  • [Show abstract] [Hide abstract]
    ABSTRACT: The biomechanical model of human coronary arteries was modified for improving the quality of diagnosis and surgical treatment for coronary heart disease. The problem of hemodynamics in the left coronary artery with multivessel bed disease - 45% stenosis of the anterior descending branch and 75% stenosis of the circumflex branch - was particularly considered. Numerical simulation of the coronary arterial bypass of the main trunk was carried out to estimate the functional condition of the coronary arteries after restoring myocardial blood supply by surgery.
    Computer Methods in Biomechanics and Biomedical Engineering 03/2015; DOI:10.1080/10255842.2015.1016005
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.
    Computer Methods in Biomechanics and Biomedical Engineering 03/2015; DOI:10.1080/10255842.2015.1015526
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work presents a biomechanical study of myringosclerosis (MS), an abnormal condition of the ear that produces calcification of the lamina propria of the eardrum. The study researched the transfer of sound to the stapes depending on the localization, dimension and calcification degree of the MS plaques. Results were obtained using a validated finite element model of the ear. The mechanical properties of the lamina propria were modified, in order to model MS plaques, using the rule of mixtures for particle composites considering that the plaques are made of hydroxyapatite particles in a matrix of connective tissue. Results show that the localization and dimension of the plaques are a factor of higher importance than calcification for loss of hearing through MS. The mobility of the stapes decreased with the presence of larger plaques and also when the tympanic annulus and the area of the handle of the malleus were involved.
    Computer Methods in Biomechanics and Biomedical Engineering 02/2015; DOI:10.1080/10255842.2015.1010526