Annals of Clinical Microbiology and Antimicrobials

Publisher: BioMed Central

Journal description

Annals of Clinical Microbiology and Antimicrobials is an Open Access, peer-reviewed, online journal focusing on information concerning clinical microbiology, infectious diseases and antimicrobials. The management of infectious disease is dependent on correct diagnosis and appropriate antimicrobial treatment, and with this in mind, the journal aims to improve the communication between basic and clinical science in the field of clinical microbiology and antimicrobial treatment. Manuscripts submitted to Annals of Clinical Microbiology and Antimicrobials can report on: any aspect of diagnosis of infectious diseases; case management and antimicrobial treatment; and antibiotic development and antimicrobial resistance. Annals of Clinical Microbiology and Antimicrobials has a broad scope, incorporating microbiology and antimicrobials in almost all branches of medicine. Furthermore, the journal has no restrictions on space or access; this ensures that the journal can reach the widest possible audience.

Current impact factor: 2.19

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.189
2013 Impact Factor 1.514
2012 Impact Factor 1.623
2011 Impact Factor 2.64

Impact factor over time

Impact factor

Additional details

5-year impact 0.00
Cited half-life 5.40
Immediacy index 0.13
Eigenfactor 0.00
Article influence 0.00
Website Annals of Clinical Microbiology and Antimicrobials website
Other titles ACMA
ISSN 1476-0711
OCLC 51164619
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dalbavancin is a lipoglycopepetide antibiotic with activity against gram positive pathogens recently approved for treatment of acute bacterial skin and skin structure infections. Pending the introduction of antimicrobial susceptibility tests, we examined the utility of vancomycin inhibitory concentrations to predict dalbavancin susceptibility in a panel of isolates obtained from phase 3 registration studies. 99.6% of Staphylococcus aureus and 99.0% of beta-hemolytic streptococci which are susceptible to vancomycin will have an MIC at or below the US FDA susceptibility breakpoint for dalbavancin. Vancomycin should be considered as a surrogate for in vitro dalbavancin susceptibility testing.
    Annals of Clinical Microbiology and Antimicrobials 12/2015; 14(1). DOI:10.1186/s12941-015-0081-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucellosis is a zoonosis that disseminated by a variety of ways between animals and humans. The effective disinfection of contaminated environments, soil, feces, and animal bodies plays an irreplaceable role in the prevention and control of brucellosis. To kill Brucella effectively, the bactericidal effects of frequently used disinfectants (including aldehydes, halogens, quaternary ammonium compound, phenolics, and alkalines) and the potential factors that influence disinfection effects were determined in the present study. The results revealed that the minimum bactericidal concentrations (MBCs) of the six disinfectants were all significantly lower than the routinely used concentrations, and all the tested disinfectants were effective against B. melitensis NI. The results of quantitative determination showed that the bactericidal effects of the disinfectants were influenced by their concentration, exposure time, dirty condition and the temperature. Under dirty conditions and a low temperatures, sodium hypochlorite and sodium hydroxide showed better bactericidal effect, while benzalkonium chloride was almost without bactericidal ability. In addition, increasing the disinfectant concentration at low temperatures can improve the bactericidal effect. The present study suggested that Brucella is sensitive to commonly used disinfectants. However, the bactericidal effect is vulnerable to dirty conditions and low temperatures. Thus, it is necessary to test the in vitro sensitivity of disinfectants that are commonly used on farms or the new disinfectant formulations periodically, with the aim of improving the efficacy of animal and human brucellosis prevention programs.
    Annals of Clinical Microbiology and Antimicrobials 12/2015; 14(1):16. DOI:10.1186/s12941-015-0077-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early diagnosis and appropriate antibiotic treatment can significantly reduce mortality of nosocomial bacterial meningitis. However, it is a challenge for clinicians to make an accurate and rapid diagnosis of bacterial meningitis. This study aimed at determining whether combined biomarkers can provide a useful tool for the diagnosis of bacterial meningitis. A retrospective study was carried out. Cerebrospinal fluid (CSF) levels of decoy receptor 3 (DcR3) and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) were detected by enzyme-linked immunosorbent assay (ELISA). The patients with bacterial meningitis had significantly elevated levels of the above mentioned biomarkers. The two biomarkers were all risk factors with bacterial meningitis. The biomarkers were constructed into a "bioscore". The discriminative performance of the bioscore was better than that of each biomarker, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.842 (95% confidence intervals (CI) 0.770-0.914; p< 0.001). Combined measurement of CSF DcR3 and sTREM-1 concentrations improved the prediction of nosocomial bacterial meningitis. The combined strategy is of interest and the validation of that improvement needs further studies.
    Annals of Clinical Microbiology and Antimicrobials 12/2015; 14(1):17. DOI:10.1186/s12941-015-0078-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans is a common cause of a variety of superficial and invasive disseminated infections the majority of which are associated with biofilm growth on implanted devices. The aim of the study is to evaluate the activity of amphotericin B and voriconazole against the biofilm and the biofilm-dispersed cells of Candida albicans using a newly developed in vitro pharmacokinetic model which simulates the clinical situation when the antifungal agents are administered intermittently. RPMI medium containing 1–5 X 106 CFU/ml of C. albicans was continuously delivered to the device at 30 ml/h for 2 hours. The planktonic cells were removed and biofilms on the catheter were kept under continuous flow of RPMI medium at 10 ml/h. Five doses of amphotericin B or voriconazole were delivered to 2, 5 and 10 day-old biofilms at initial concentrations (2 and 3 μg/ml respectively) that were exponentially diluted. Dispersed cells in effluents from the device were counted and the adherent cells on the catheter were evaluated after 48 h of the last dose. The minimum inhibitory concentration of voriconazole and amphotericin B against the tested isolate was 0.0325 and 0.25 μg/ml respectively. Amphotericin B significantly reduced the dispersion of C. albicans cells from the biofilm. The log10 reduction in the dispersed cells was 2.54-3.54, 2.30-3.55, and 1.94-2.50 following addition of 5 doses of amphotericin B to 2-, 5- and 10-day old biofilms respectively. The number of the viable cells within the biofilm was reduced by 18 (±7.63), 5 and 4% following addition of the 5 doses of amphotericin B to the biofilms respectively. Voriconazole showed no significant effect on the viability of C. albicans within the biofilm. Both antifungal agents failed to eradicate C. albicans biofilm or stop cell dispersion from them and the resistance progressed with maturation of the biofilm. These findings go along with the need for removal of devices in spite of antifungal therapy in patients with device-related infection. This is the first study which investigates the effects of antifungal agents on the biofilm and biofilm-dispersion of C. albicans in an in vitro pharmacokinetic biofilm model.
    Annals of Clinical Microbiology and Antimicrobials 12/2015; 14(1). DOI:10.1186/s12941-015-0083-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caylusea absyssinica, a plant used as vegetable and for medicinal purposes was selected for in vitro antibacterial evaluation in this study. The main aim of this study was to isolate compounds from the plant roots and evaluate their antibacterial activities on clinical bacterial test strains. Compounds from roots of Caylusea absyssinica (fresen) were identified based on observed spectral (1H-NMR, 13C-NMR and IR) data and physical properties (melting point) as well as reported literature. Disk diffusion method was employed to evaluate the antibacterial activities of the isolated compounds on four test bacterial strains namely, Staphylococcus aureus (ATCC25903), Escherichia coli (ATCC25722), Pseudomonas aeruginosa (DSMZ1117) and Salmonella thyphimurium (ATCC13311). Two compounds, CA1 and CA2 were isolated from the methanol crude extract of the roots of Caylusea absyssinica (fresen). The compounds were identified as β-sitosterol and stigmasterol, respectively. Evaluation of antibacterial activities revealed that the compounds are active against all the bacterial strains in the experiment, showing inhibition zones ranging from 12 mm-15 mm by CA1 and 11 mm-18 mm by CA2 against the different test strains. However, the compounds were less active than the reference drug (Gentamycine), which showed minimum inhibition zone of 21 mm (Pseudomonas aeruginosa) and maximum of 28 mm (Escherichia coli) inhibition zone. The isolation of the compounds is the first report from roots of Caylusea abyssinica and could be potential candidates for future antibacterial drug development programs.
    Annals of Clinical Microbiology and Antimicrobials 12/2015; 14(1):15. DOI:10.1186/s12941-015-0072-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Bacillus cereus is one of the pathogens causing nosocomial bloodstream infections (BSIs). However, few reports have documented the antimicrobial susceptibility and clinical characteristics of Bacillus cereus BSI and the importance of empirical therapy. The aim of this study was to investigate the clinical characteristics and antimicrobial susceptibility of B. cereus isolates from patients with BSI and to analyze the impact of appropriate empirical therapy on the outcome of patients with B. cereus BSI. Methods: All adult cases of bacteremia between April 2003 and March 2012 in a teaching hospital in Tokyo, Japan were reviewed retrospectively. Clinical data were collected from the patients' medical records and charts. Antimicrobial susceptibility testing was performed by broth microdilution method. The patients with B. cereus BSI were divided into an appropriate empirical therapy group and an inappropriate empirical therapy group. The primary outcome was all-cause mortality at 4 weeks after the start of BSI. The secondary outcome was early defervescence within 2 days after starting empirical therapy. Results: There were 29 B. cereus bloodstream infection cases. No vancomycin, gentamicin, and imipenem-resistant isolates were found. However, 65.5 % were resistant to clindamycin and 10.3 % were resistant to levofloxacin. The main etiology was venous catheter-related (69 %). All-cause mortality at 4 weeks was not significantly different between the appropriate empirical therapy group (9 cases) and the inappropriate group (20 cases) in this study. However, early defervescence within 2 days after starting empirical therapy was significantly different (p = 0.032). Conclusions: The BSI of B. cereus is mostly caused by venous catheter-related infections. Appropriate empirical therapy is important to achieve early clinical resolution in B. cereus BSI. Vancomycin is one of the appropriate selections of empirical therapy for B. cereus BSI.
    Annals of Clinical Microbiology and Antimicrobials 09/2015; 14(1):43. DOI:10.1186/s12941-015-0104-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study determined the antibiotic susceptibility profile and genetic mechanisms of β-lactam resistance in 27 clinical strains of Acinetobacter baumannii isolated at the University Hospitals of Geneva, Switzerland. The antimicrobial susceptibility testing was performed using Etest and the disc diffusion method in accordance with CLSI guidelines. All of the strains were defined as multi-drug resistant (MDR) and were susceptible to colistin and moderately susceptible to tigecycline. Uniplex PCR assays were used to detect the following β-lactamase genes: four class D carbapenem-hydrolysing oxacillinases (blaOXA-51, blaOXA-23, blaOXA-24 and blaOXA-58), four class B metallo-β-lactamases genes (blaIMP, blaVIM, blaSPM and blaNDM) and two class A carbapenemases (blaKPC and blaGES). All of the strains were positive for blaOXA-51 (intrinsic resistance), 14/27 strains carried blaOXA-23, 2/27 strains carried a blaOXA-24-like gene, and 4/27 strains had a blaOXA-58 gene. blaGES-11 was found in three strains, and NDM-1-harbouring strains were identified in three patients. All of the A. baumannii isolates were typed by rep-PCR (DiversiLab) and excluded any clonality. Altogether, this analysis suggests a very high genetic diversity of imported MDR A. baumannii.
    Annals of Clinical Microbiology and Antimicrobials 09/2015; 14(1):42. DOI:10.1186/s12941-015-0103-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acinetobacter baumannii is a common opportunistic pathogen that causes major nosocomial infections in hospitals. In this study, we hypothesized a high prevalence of A. baumanni ESBL (extended-spectrum beta-lactamase) among all collected isolates. A. baumannii isolates (n = 107) from ICU (Intensive care unit) of local hospitals in Makkah were phenotypically and genotypically characterized. The identity and antibiotic susceptibility of A. baumannii strains were determined using the Vitek-2 system. The identified ESBL producers were further analyzed by PCR and sequencing followed by MLST typing. bla TEM , bla SHV , and the bla CTX-M-group genes 1, 2, 8, 9, and 25 were investigated. Furthermore, bla OXA51-like and bla OXA23-like genes were also examined in the carbapenem-resistant A. baumannii isolates. Our data indicated a high prevalence of A. baumannii ESBL producers among the collected strains. Of the 107 A. baumannii isolates, 94 % were found to be resistant to cefepime and ceftazidime, and aztreonam using the Vitek 2 system. The genes detected encoded TEM, OXA-51-like and OXA-23-like enzymes, and CTX-M-group proteins 1, 2, 8, 9, and 25. MLST typing identified eight sequence type (ST) groups. The most dominant STs were ST195 and ST557 and all of them belong to worldwide clonal complex (CC) 2. This study has shown that there is a high prevalence of antimicrobial resistance in A. baumannii. The diversity of STs may suggest that new ESBL strains are constantly emerging. The molecular diversity of the ESBL genes in A. baumannii may have contributed to the increased antimicrobial resistance among all isolates.
    Annals of Clinical Microbiology and Antimicrobials 08/2015; 14(1):38. DOI:10.1186/s12941-015-0098-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Polyhexamethylene guanidine phosphate (PHMG-P) belongs to the polymeric guanidine family of biocides and contains a phosphate group, which may confer better solubility, a detoxifying effect and may change the kinetics and dynamics of PHMG-P interactions with microorganisms. Limited data regarding PHMG-P activity against periodontopathogenic and cariogenic microorganisms necessitates studies in this area. Aim is to evaluate polyhexamethylene guanidine phosphate antimicrobial activity in comparison to chlorhexidine. Methods: Quantitative suspension method was used enrolling Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans and Lactobacillus acidophilus. Results: Both tested antiseptics at their clinically-used concentrations, of 0.2% (w/v) and 1% (w/v), correspondingly provided swift bactericidal effects against S. aureus, P. aeruginosa, E. coli and C. albicans, A. actinomycetemcomitans and P. gingivalis with reduction factors higher than 6.0. Diluted polyhexamethylene guanidine phosphate and chlorhexidine to 0.05% continued to display anti-bacterial activity and decreased titers of standard quality control, periopathogens to below 1.0 × 10(3) colony forming units/ml, albeit requiring prolonged exposure time. To achieve a bactericidal effect against S. mutans, both antiseptics at all concentrations required a longer exposure time. We found that a clinically-used 1% of polyhexamethylene guanidine phosphate concentration did not have activity against L. acidophilus. Conclusion: High RF of polyhexamethylene guanidine phosphate and retention of bactericidal effects, even at 0.05%, support the use of polyhexamethylene guanidine phosphate as a biocide with sufficient anti-microbial activity against periopathogens. Polyhexamethylene guanidine phosphate displayed bactericidal activity against periopathogens and S. mutans and could potentially be applied in the management of oral diseases.
    Annals of Clinical Microbiology and Antimicrobials 07/2015; 14(1). DOI:10.1186/s12941-015-0097-x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high cost and prolonged timeline of new drug discovery and development are major roadblocks to creating therapies for infectious diseases. Candida albicans is an opportunistic fungal pathogen that is the most common cause of fatal fungal infections in humans and costs $2-4 billion dollars to treat in the US alone. To accelerate drug discovery, we screened a library of 1581 existing FDA approved drugs, as well as drugs approved abroad, for inhibitors of C. albicans. The screen was done on YPD yeast growth media as well as on the serum plate assay developed in this study. We discovered that fifteen drugs, all which were originally approved for treating various infectious and non-infectious diseases, were able to kill Candida albicans. Additionally, one of those drugs, Octodrine, displays wide-spectrum anti-microbial activity. Compared to other selected anti-Candida drugs, Octodrine was shown to be one of the most effective drugs in killing serum-grown Candida albicans without significantly affecting the survival of host macrophages and skin cells. This approach is useful for the discovery of economically viable new therapies against infectious diseases.
    Annals of Clinical Microbiology and Antimicrobials 06/2015; 14(1):32. DOI:10.1186/s12941-015-0090-4