BioMedical Engineering OnLine Journal Impact Factor & Information

Publisher: BioMed Central

Journal description

BioMedical Engineering OnLine is an Open Access, peer-reviewed, online journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world with an interest in using tools of the physical sciences to advance and understand problems in the biological and medical sciences. There are biomedical engineers in countries throughout the world, and the results of their work are scattered and often difficult to access. This publication promotes the rapid and free accessibility of articles for biomedical engineering researchers everywhere. The result is a worldwide community of biomedical engineers who are linked together by their various research interests and their values in promoting benefits to all of humanity.

Current impact factor: 1.43

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.427
2013 Impact Factor 1.746
2012 Impact Factor 1.608
2011 Impact Factor 1.405
2010 Impact Factor 1.119
2009 Impact Factor 1.639
2008 Impact Factor 1.8

Impact factor over time

Impact factor

Additional details

5-year impact 1.99
Cited half-life 4.40
Immediacy index 0.21
Eigenfactor 0.00
Article influence 0.53
Website BioMedical Engineering Online website
ISSN 1475-925X
OCLC 50638424
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In high field MRI capable of multi-channel radio frequency (RF) transmission, B 1 shimming is a time-consuming job because conventional B 1 shimming techniques require B 1 mapping for each channel. After acquiring the complex-numbered B 1 field maps, the optimal amplitude and phase of the driving RF pulse are determined for each channel to maximize the B 1 field uniformity in conventional B 1 shimming. However, time-consuming B 1 shimming procedures at the pre-scan may not be tolerated in the clinical imaging in which patient throughput is one of the important factors. To avoid the time-consuming B 1 mapping, the first spin echo and the stimulated echo were repeatedly acquired in the slice-selective stimulated echo sequence without imaging gradients. A cost function of the amplitudes and phases of the driving RF pulse for every channel was defined in a way that the ratio between the spin echo and stimulated echo amplitudes rapidly converged to √ 2. The amplitude and phase of the driving RF pulse were iteratively modified over the repeating RF pulse sequence so that the cost function was minimized. From the finite-difference-time-domain (FDTD) electromagnetic field simulations with a human body model placed in a birdcage coil operating at 3 T, it was observed that the RF pulse calibration with iterative cost function minimization can give improvement of B1 field uniformity as well as flip-angle calibration. The experiments at 3 T also showed improvement of RF field uniformity in the phantom imaging studies. Since the proposed RF pulse calibration is not based on B 1 mapping, the RF pulse calibration time could be much shorter than the B 1-mapping based methods. The proposed method is expected to be a practical substitute for the B 1-mapping-based B 1 shimming methods when long pre-scan time is not tolerable.
    BioMedical Engineering OnLine 12/2015; 14(1). DOI:10.1186/s12938-015-0010-z
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unsupervised lung segmentation method is one of the mandatory processes in order to develop a Content Based Medical Image Retrieval System (CBMIRS) of CXR. The purpose of the study is to present a robust solution for lung segmentation of standard and mobile chest radiographs using fully automated unsupervised method. The novel method is based on oriented Gaussian derivatives filter with seven orientations, combined with Fuzzy C-Means (FCM) clustering and thresholding to refine the lung region. In addition, a new algorithm to automatically generate a threshold value for each Gaussian response is also proposed. The algorithms are applied to both PA and AP chest radiographs from both public JSRT dataset and our private datasets from collaborative hospital. Two pre-processing blocks are introduced to standardize the images from different machines. Comparisons with the previous works found in the literature on JSRT dataset shows that our method gives a reasonably good result. We also compare our algorithm with other unsupervised methods to provide fairly comparative measures on the performances for all datasets. Performance measures (accuracy, F-score, precision, sensitivity and specificity) for the segmentation of lung in public JSRT dataset are above 0.90 except for the overlap measure is 0.87. The standard deviations for all measures are very low, from 0.01 to 0.06. The overlap measure for the private image database is 0.81 (images from standard machine) and 0.69 (images from two mobile machines). The algorithm is fully automated and fast, with the average execution time of 12.5 s for 512 by 512 pixels resolution. Our proposed method is fully automated, unsupervised, with no training or learning stage is necessary to segment the lungs taken using both a standard machine and two different mobile machines. The proposed pre-processing blocks are significantly useful to standardize the radiographs from mobile machines. The algorithm gives good performance measures, robust, and fast for the application of the CBMIRS.
    BioMedical Engineering OnLine 12/2015; 14(1):14. DOI:10.1186/s12938-015-0014-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Auditory neural stimulation with pulsed infrared radiation has been proposed as an alternative method to activate the auditory nerves in vivo. Infrared wavelengths from 1800–2150 nm with high water absorption were mainly selected in previous studies. However, few researchers have used the short-wavelength infrared (SWIR) for auditory nerve stimulation and limited pulse parameters variability has been investigated so far. In this paper, we pioneered to use the 980 nm SWIR laser with adjustable pulse parameter as a stimulus to act on the deafened guinea pigs’ cochlea in vivo. Pulsed laser light was guided through the cochlear round window to irradiate the spiral ganglion cells via a 105 μm optical fiber, and then the laser pulse parameters variability and its influence to auditory response characteristics were studied. The results showed that the optically evoked auditory brainstem response (OABR) had a similar waveform to the acoustically induced ABR with click sound stimulus. And the evoked OABR amplitude had a positive correlation, while the OABR latency period showed a negative correlation, with the laser pulse energy increase. However, when holding the laser peak power constant, the pulse width variability ranged from 100 to 800 μs showed little influence on the evoked OABR amplitude and its latency period. Our study suggests that 980 nm SWIR laser is an effective stimulus for auditory neurons activation in vivo. The evoked OABR amplitude and latency are highly affected by the laser pulse energy, while not sensitive to the pulse width variability in 100–800 μs range.
    BioMedical Engineering OnLine 12/2015; 14(1). DOI:10.1186/s12938-015-0084-7

  • BioMedical Engineering OnLine 12/2015; 14(1). DOI:10.1186/s12938-015-0086-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although autogenous bone grafts as well as several bone graft substitute material have been used for some time, there is high demand for more efficient and less costly bone-substitute materials. Silicon-substituted calcium phosphates (Si-CaP) and fine particulate bone powder (FPBP) preparations have been previously shown to individually possess many of the required features of a bone graft substitute scaffold. However, when applied individually, these two materials fall short of an ideal substitute material. We investigated a new concept of combining Si-CaP with FPBP for improved performance in bone-repair. We assessed Si-CaP/FPBP combined grafts in vitro, by measuring changes in pH, weight loss, water absorption and compressive strength over time. Si-CaP/FPBP combined grafts was found to produce conditions of alkaline pH levels compared to FPBP, and scaffold surface morphology conducive to bone cell adhesion, proliferation, differentiation, tissue growth and transport of nutrients, while maintaining elasticity and mechanical strength and degradation at a rate closer to osteogenesis. Si-CaP/FPBP combined grafts was found to be superior to any of the two components individually.
    BioMedical Engineering OnLine 12/2015; 14(1). DOI:10.1186/s12938-015-0042-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In spite of numerous research efforts on supporting the therapy of diabetes mellitus, the subject still involves challenges and creates active interest among researchers. In this paper, a decision support tool is presented for setting insulin therapy in new-onset type 1 diabetes. The concept of differential sequential patterns (DSPs) is introduced with the aim of representing deviations in the patient's blood glucose level (BGL) and the amount of insulin injections administered. The decision support tool is created using data mining algorithms for discovering sequential patterns. By using the DSPs, it is possible to support the physician's decisionmaking concerning changing the treatment (i.e., whether to increase or decrease the insulin dosage). The other contributions of the paper are an algorithm for generating DSPs and a new method for evaluating nocturnal glycaemia. The proposed qualitative evaluation of nocturnal glycaemia improves the generalization capabilities of the DSPs. The usefulness of the proposed approach was evident in the results of experiments in which juvenile diabetic patients actual data were used. It was confirmed that the proposed DSPs can be used to guide the therapy of numerous juvenile patients with type 1 diabetes.
    BioMedical Engineering OnLine 12/2015; 14(1). DOI:10.1186/s12938-015-0004-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gait movement is an essential process of the human activity and the result of collaborative interactions between the neurological, articular and musculoskeletal systems, working efficiently together. This explains why gait analysis is important and increasingly used nowadays for the diagnosis of many different types (neurological, muscular, orthopedic, etc.) of diseases. This paper introduces a novel method to quickly visualize the different parts of the body related to an asymmetric movement in the human gait of a patient for daily clinical usage. The proposed gait analysis algorithm relies on the fact that the healthy walk has (temporally shift-invariant) symmetry properties in the coronal plane. The goal is to provide an inexpensive and easy-to-use method, exploiting an affordable consumer depth sensor, the Kinect, to measure the gait asymmetry and display results in a perceptual way. We propose a multi-dimensional scaling mapping using a temporally shift invariant distance, allowing us to efficiently visualize (in terms of perceptual color difference) the asymmetric body parts of the gait cycle of a subject. We also propose an index computed from this map and which quantifies locally and globally the degree of asymmetry. The proposed index is proved to be statistically significant and this new, inexpensive, marker-less, non-invasive, easy to set up, gait analysis system offers a readable and flexible tool for clinicians to analyze gait characteristics and to provide a fast diagnostic. This system, which estimates a perceptual color map providing a quick overview of asymmetry existing in the gait cycle of a subject, can be easily exploited for disease progression, recovery cues from post-operative surgery (e.g., to check the healing process or the effect of a treatment or a prosthesis) or might be used for other pathologies where gait asymmetry might be a symptom.
    BioMedical Engineering OnLine 12/2015; 14(1). DOI:10.1186/s12938-015-0097-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both maxillary protraction and rapid expansion are recommended for patients with cleft palate and alveolus. The aim of the study is to establish a three-dimensional finite element model of the craniomaxillary complex with unilateral cleft palate and alveolus to simulate maxillary protraction with and without rapid maxillary expansion. The study also investigates the deformation of the craniomaxillary complex after applied orthopaedic forces in different directions. A three dimensional finite element model of 1,277,568 hexahedral elements (C3D8) and 1,801,945 nodes was established based upon CT scan of a patient with unilateral cleft palate and alveolus on the right side in this study. A force of 4.9 N per side was directed on the anatomic height of contour on the buccal side of the first molar. The angles between the force vector and occlusal plane were -30°, -20°, -10°, 0°, 10°, 20°, and 30°. A force of 2.45 N on each loading point was directed on the anatomic height of contour on the lingual side of the first premolar and the first molar to simulate the expansion of the palate. The craniomaxillary complex displaced forward under any of the loading conditions. The sagittal and vertical displacement of the craniomaxillary complex reached their peak at the protraction degree of -10° forward and downward to the occlusal plane. There were larger sagittal displacements when the maxilla was protracted forward with maxillary expansion. The palatal plane rotated counterclockwise under any of the loading conditions. Being protracted without expansion, the dental arch was constricted. When supplemented with maxillary expansion, the width of the dental arch increased. Transverse deformation of the dental arch on affected side was different from that on unaffected side. Protraction force alone led the craniomaxillary complex moved forward and counterclockwise, accompanied with lateral constrain on the dental arch. Additional rapid maxillary expansion resulted in a more positive reaction including both larger sagittal displacement and the width of the dental arch increase.
    BioMedical Engineering OnLine 12/2015; 14(1):80. DOI:10.1186/s12938-015-0074-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a Tracer Liquid Image Velocimetry (TLIV) for multi-layer radial flow in bioreactors used for cells cultivation of tissue engineering. The goal of this approach is to use simple devices to get good measuring precision, specialized for the case in which the uniform level of fluid shear stress was required while fluid velocity varied smoothly. Compared to the widely used Particles Image Velocimetry (PIV), this method adopted a bit of liquid as tracer, without the need of laser source. Sub-pixel positioning algorithm was used to overcome the adverse effects of the tracer liquid deformation. In addition, a neighborhood smoothing algorithm was used to restrict the measurement perturbation caused by diffusion. Experiments were carried out in a parallel plates flow chamber. And mathematical models of the flow chamber and Computational Fluid Dynamics (CFD) simulation were separately employed to validate the measurement precision of TLIV. The mean relative error between the simulated and measured data can be less than 2%, while in similar validations using PIV, the error was around 8.8%. TLIV avoided the contradiction between the particles' visibility and following performance with tested fluid, which is difficult to overcome in PIV. And TLIV is easier to popularize for its simple experimental condition and low cost.
    BioMedical Engineering OnLine 12/2015; 14(1):2. DOI:10.1186/s12938-015-0002-z
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Forced Oscillation Technique (FOT) has the potential to increase our knowledge about the biomechanical changes that occur in Cystic Fibrosis (CF). Thus, the aims of this study were to investigate changes in the resistive and reactive properties of the respiratory systems of adults with CF. The study was conducted in a group of 27 adults with CF over 18 years old and a control group of 23 healthy individuals, both of which were assessed by the FOT, plethysmography and spirometry. An equivalent electrical circuit model was also used to quantify biomechanical changes and to gain physiological insight. The CF adults presented an increased total respiratory resistance (p < 0.0001), increased resistance curve slope (p < 0.0006) and reduced dynamic compliance (p < 0.0001). In close agreement with the physiology of CF, the model analysis showed increased peripheral resistance (p < 0.0005) and reduced compliance (p < 0.0004) and inertance (p < 0.005). Significant reasonable to good correlations were observed between the resistive parameters and spirometric and plethysmographic indexes. Similar associations were observed for the reactive parameters. Peripheral resistance, obtained by the model analysis, presented reasonable (R = 0.35) to good (R = 0.64) relationships with plethysmographic parameters. The FOT adequately assessed the biomechanical changes associated with CF. The model used provides sensitive indicators of lung function and has the capacity to differentiate between obstructed and non-obstructed airway conditions. The FOT shows great potential for the clinical assessment of respiratory mechanics in adults with CF.
    BioMedical Engineering OnLine 12/2015; 14(1):7. DOI:10.1186/s12938-015-0007-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colour image segmentation is fundamental and critical for quantitative histological image analysis. The complexity of the microstructure and the approach to make histological images results in variable staining and illumination variations. And ultra-high resolution of histological images makes it is hard for image segmentation methods to achieve high-quality segmentation results and low computation cost at the same time. Mean Shift clustering approach is employed for histological image segmentation. Colour histological image is transformed from RGB to CIE L*a*b* colour space, and then a* and b* components are extracted as features. To speed up Mean Shift algorithm, the probability density distribution is estimated in feature space in advance and then the Mean Shift scheme is used to separate the feature space into different regions by finding the density peaks quickly. And an integral scheme is employed to reduce the computation cost of mean shift vector significantly. Finally image pixels are classified into clusters according to which region their features fall into in feature space. Numerical experiments are carried on liver fibrosis histological images. Experimental results demonstrate that Mean Shift clustering achieves more accurate results than k-means but is computational expensive, and the speed of the improved Mean Shift method is comparable to that of k-means while the accuracy of segmentation results is the same as that achieved using standard Mean Shift method. An effective and reliable histological image segmentation approach is proposed in this paper. It employs improved Mean Shift clustering, which is speed up by using probability density distribution estimation and the integral scheme.
    BioMedical Engineering OnLine 12/2015; 14(1). DOI:10.1186/s12938-015-0020-x