Journal of Enzyme Inhibition and Medicinal Chemistry Impact Factor & Information

Publisher: Informa Healthcare

Journal description

The Journal of Enzyme Inhibition and Medicinal Chemistry is an international and interdisciplinary vehicle publishing new knowledge and findings on enzyme inhibitors and inhibitory processes. The journal publishes research papers, short communications and reviews on current developments across the disciplines of enzymology, cell biology, microbiology, physiology, pharmacology, drug design and biophysics. Among the various fields of enquiry, special attention is given to structural and molecular studies, kinetics and inactivation mechanisms, structure- activity relationships (including QSAR and graphic techniques) within a chemical series or group, drug development studies, and control mechanisms in metabolic processes.

Current impact factor: 2.33

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.332
2013 Impact Factor 2.383
2012 Impact Factor 1.495
2011 Impact Factor 1.617
2010 Impact Factor 1.574
2009 Impact Factor 1.496
2008 Impact Factor 1.421
2007 Impact Factor 1.343
2006 Impact Factor 1.636
2005 Impact Factor 1.667
2004 Impact Factor 1.423
2003 Impact Factor 0.775
2002 Impact Factor 1.045

Impact factor over time

Impact factor

Additional details

5-year impact 1.75
Cited half-life 5.10
Immediacy index 0.69
Eigenfactor 0.00
Article influence 0.39
Website Journal of Enzyme Inhibition and Medicinal Chemistry website
Other titles Journal of enzyme inhibition and medicinal chemistry (Online), Enzyme inhibition and medicinal chemistry
ISSN 1475-6374
OCLC 50446834
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Informa Healthcare

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • On author's personal website or institution website
    • Publisher copyright and source must be acknowledged
    • Non-commercial
    • Must link to publisher version
    • Publisher's version/PDF cannot be used
    • NIH funded authors may post articles to PubMed Central for release 12 months after publication
    • Wellcome Trust authors may deposit in Europe PMC after 6 months
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of new 7-arylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 8-amino substituent in 8 position was synthesized and their 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, and D2 receptor affinities were determined. The binding study allowed identifying some potent 5-HT1A/5-HT2A/5-HT7/D2 ligands. The most interesting because of their multireceptor profile were 8-piperidine (30-35) and 8-dipropylamine (45-47) analogs with four and five carbon aliphatic linkers. The selected compounds 24, 31, 34, 39, 41, 43, 45, and 46 in the functional in vitro evaluation for all targeted receptors showed significant partial D2 agonist, partial 5-HT1A agonist, and 5-HT2A antagonist properties. The advantageous in vitro affinity of compound 34 for 5-HT1A and D2 receptors has been explained by means of molecular modeling, taking into consideration its partial agonist activity towards the latter one. In behavioral studies, compounds 32 and 34 revealed antipsychotic-like properties, significantly decreasing d-amphetamine-induced hyperactivity in mice.
    Journal of Enzyme Inhibition and Medicinal Chemistry 09/2015; DOI:10.3109/14756366.2015.1088844
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study has demonstrated a dual effect of nitric oxide on phenoloxidase (PO)-mediated DOPA oxidation and melanization process. NO generated at low rates proportionally increased in PO-mediated DOPA oxidation. Competitive PO inhibitor, phenylthiourea, resulted in significant inhibition of NO-mediated DOPA oxidation. Further analysis using fluorescent and EPR methods demonstrated that the effect of NO on DOPA oxidation is explained by oxidation of NO to NO2 at the active site of PO followed by oxidation of DOPA by NO2. On the contrary, the bolus addition of NO gas solution resulted in a significant decrease in observed PO activity. Similar dose-dependent effect of NO was observed for the insect's haemocytes quantified as percentage of melanized cells after treatment with nitric oxide. In conclusion, the results of the study suggest that NO may have a significant regulatory role on melanization process in invertebrates as well as in human and result in protective or damaging effects.
    Journal of Enzyme Inhibition and Medicinal Chemistry 09/2015; DOI:10.3109/14756366.2015.1088843
  • [Show abstract] [Hide abstract]
    ABSTRACT: 5α-R isozymes (types 1 and 2) play an important role in prostate gland development because they are responsible for intraprostatic dihydrotestosterone (DHT) levels when the physiological serum testosterone (T) concentration is low. In this study, we synthesized seven novel dehydroepiandrosterone derivatives with benzimidazol moiety at C-17, and determined their effect on the activity of 5α-reductase types 1 and 2. The derivatives with an aliphatic ester at C-3 of the dehydroepiandrosterone scaffold induced specific inhibition of 5α-R1 activity, whereas those with a cycloaliphatic ester (cyclopropyl, cyclobutyl, or cyclopentyl ring) or an alcohol group at C-3 inhibited the activity of both isozymes. Derivatives with a cyclohexyl or cycloheptyl ester at C-3 showed no inhibitory activity. In pharmacological experiments, derivatives with esters having an alcohol or the aliphatic group or one of the three smaller cycloaliphatic rings at C-3 decreased the diameter of male hamster flank organs, with the cyclobutyl and cyclopentyl esters exhibiting higher effect. With exception of the cyclobutyl and cyclopentyl esters, these compounds reduced the weight of the prostate and seminal vesicles.
    Journal of Enzyme Inhibition and Medicinal Chemistry 09/2015; DOI:10.3109/14756366.2015.1070843
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel N-aroyl-α,β-unsaturated piperidones, series 1, series 2 and series 3 (featuring 2-bromo-4,5-dimethoxybenzylidene, 4-dimethylaminobenzylidene and 4-trifluoromethylbenzylidene, respectively), were synthesized as candidate cytotoxins. Most of the compounds displayed potent cytotoxicity against the human neoplastic cell lines SK-BR-3, PG-BE1, NCI-H460, MIA PaCa-2 and SW1990 in vitro, and approximately 64% of the IC50 values were lower than 5 μM. Among those tested, compound 1b of series 1, 3a, 3d and 3e of series 3 proved to be the most active. Importantly, 1b displayed marked inhibitory effects on tumor growth in vivo and had no apparent toxicity to mice; this was evaluated by a nude mouse PG-BE1 xenograft model. In addition, the fluorescent properties of compounds series 1-3 were investigated. The interesting fluorescence exhibited by these compounds could be useful for their visualization in tumor cells, permitting further studies on these α,β-unsaturated piperidones as candidates for novel fluorescent antitumor agents.
    Journal of Enzyme Inhibition and Medicinal Chemistry 09/2015; DOI:10.3109/14756366.2015.1043296
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulfamerazine and sulfaguanidine are clenched with p-nitrobenzoyl chloride and the products obtained are reduced to NaxS in ethanol-water. Novel sulfonamides (6a-g and 9a-g) were synthesized by the reaction of these reduced products (4 and 8) with various sulfonyl chlorides (5a-g). The structures of these compounds were characterized using spectroscopic analysis (IR, (1)H-NMR, (13)C-NMR and HRMS) technique. Antimicrobial activity of sulfonamides (3, 4, 7, 8, 6a-g and 9a-g) was evaluated by the agar diffusion method. These compounds showed antimicrobial activity against tested microorganism strains (Gram-positive bacteria, clinic isolate and yeast and mold). Compounds 9d, 9e, 9a, 6d and 6e showed particularly antimicrobial activity against tested Gram-positive (Bacillus cereus and B. subtilis) and Gram-negative (Enterobacter aerogenes) bacteria.
    Journal of Enzyme Inhibition and Medicinal Chemistry 09/2015; DOI:10.3109/14756366.2015.1079183
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription 3 (STAT3) plays an essential role in cell growth regulation and survival. An aberrant STAT3 activation and/or expression is implied in various solid and blood tumors as well as in other pathologies like rheumatoid arthritis and pulmonary fibrosis, thus making the search for STAT3 inhibitors a growing field of study. With the aim of identifying new inhibitors of STAT3 dimerization, we screened a database including more than 1 320 000 commercially available compounds using a receptor-based pharmacophore model comprising the key protein-protein interactions identified in the STAT3 dimer and refining the search through docking and molecular dynamic simulations studies. STAT3 binding assays revealed a significant STAT3 inhibitory activity and selectivity versus Grb2 for one of the four top-scored compounds, thus verifying the reliability of the virtual screening workflow. Moreover, such compound could already be considered as a lead for the development of new and more potent STAT3 dimerization inhibitors.
    Journal of Enzyme Inhibition and Medicinal Chemistry 08/2015; DOI:10.3109/14756366.2015.1079184
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.
    Journal of Enzyme Inhibition and Medicinal Chemistry 08/2015; DOI:10.3109/14756366.2015.1078329
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acid (4) derivatives containing structural characteristics that can be used for the synthesis of several active molecules, is presented. Some of the butenoic acid derivatives (4a, 4c, 4e, 4i, 4j, 4k) are synthesized following literature procedures and at the end of the reaction. In addition, structures of all synthesized derivatives (4a–4m) were determined by 1H-NMR, 13C-NMR and IR spectroscopy. Carbonic anhydrase is a metalloenzyme involved in many crucial physiologic processes as it catalyzes a simple but fundamental reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Significant results were obtained by evaluating the enzyme inhibitory activities of these derivatives against human carbonic anhydrase hCA I and II isoenzymes (hCA I and II). Butenoic acid derivatives (4a–4m) strongly inhibited hCA I and II with Kis in the low nanomolar range of 1.85 ± 0.58 to 5.04 ± 1.46 nM against hCA I and in the range of 2.01 ± 0.52 to 2.94 ± 1.31 nM against hCA II.
    Journal of Enzyme Inhibition and Medicinal Chemistry 08/2015; DOI:10.3109/14756366.2015.1071808
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbonic anhydrase IX (CAIX) is a pivotal pH regulator under hypoxia, which by its tumor-specific expression represents an attractive target for cancer therapy. Here, we report on effects of the sulfamate CAIX inhibitor S4 (4-(3'-(3″,5″-dimethylphenyl)ureido)phenyl sulfamate) in colorectal carcinoma cell lines. S4 was administered under experimental hypoxia or normoxia to HT29, KM20L2 and HCT116 cells. Effects on survival, proliferation, pH, lactate extrusion and CAIX protein expression were evaluated. S4 treatment resulted in attenuated hypoxia-induced extracellular acidification and reduced clonogenic survival under hypoxia in HT29 cells. The pH effects were present only in a [Formula: see text]-free buffer system and were accompanied by decreased lactate extrusion. The main finding of this work was that S4 treatment caused alterations in CAIX ectodomain shedding. This merits further investigation to understand how sulfamates influence CAIX activity and how such drugs may be of use in cancer treatment.
    Journal of Enzyme Inhibition and Medicinal Chemistry 08/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transthyretin (TTR) is a 54 kDa homotetrameric protein that transports thyroxine (T4) and retinol (vitamin A), through its association with retinol binding protein (RBP). Under unknown conditions, it aggregates to form fibrils associated with TTR amyloidosis. Ligands able to inhibit fibril formation have been studied by X-ray crystallography. The use of polyethylene glycol (PEG) instead of ammonium sulphate or citrate has been evaluated as an alternative to obtain new TTR complexes with (R)-3-(9-fluoren-9-ylideneaminooxy)-2-methyl-N-(methylsulfonyl) propionamide (48R(1)) and 2-(9H-fluoren-9-ylideneaminooxy) acetic acid (ES8(2)). The previously described fluorenyl based inhibitors (S)-3-((9H-fluoren-9-ylideneamino)oxy)-2-methylpropanoic acid (6BD) and 3-((9H-fluoren-9-ylideneamino)oxy)propanoic acid (7BD) have been re-evaluated with the changed crystallization method. The new TTR complexes with compounds of the same family show that the 9-fluorenyl motif can occupy alternative hydrophobic binding sites. This augments the potential use of this scaffold to yield a large variety of differently substituted mono-aryl compounds able to inhibit TTR fibril formation.
    Journal of Enzyme Inhibition and Medicinal Chemistry 08/2015;