Annals of Occupational Hygiene (Ann Occup Hyg )

Publisher: British Occupational Hygiene Society, Oxford University Press


The Annals of Occupational Hygiene aims to promote a healthy working environment by publishing research papers and reviews on health hazards and risks resulting from work, especially their recognition, quantification, management and control. The journal is interested in basic mechanisms, but also human aspects and technology. It includes papers on broader environmental risks to humans where these risks are closely related to work.Topics covered include (but are not limited) to the following:chemical, physical and biological agents; their mechanisms of formation, emission, exposure, absorption and effectmeasurement, control, process design, ergonomics and protectionoccupational toxicology and epidemiologyassessment and management of risk, education and trainingThe journal includes papers, short communications and letters to the editor. For further details of these, see Instructions to Authors, near the end of each issue.The Annals of Occupational Hygiene is the official journal of the British Occupational Hygiene Society It was founded in 1958 and is edited by Trevor Ogden (Editor in Chief) and Stephen Rappaport (North American Editor).ANNOUNCEMENT: For the second year in succession, the Impact Factor of the Annals of Occupational Hygiene has reached an all-time high. The current Impact Factor (1999) is 1.577.

  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Annals of Occupational Hygiene website
  • Other titles
    Annals of occupational hygiene (Online)
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Oxford University Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 month embargo on science, technology, medicine articles
    • 24 month embargo on arts and humanities articles
    • Some titles may have different embargoes
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print must be accompanied by set statement (see link)
    • Pre-print must not be replaced with post-print, instead a link to published version with amended set statement should be made
    • Pre-print on personal website, employer website, free public server or pre-prints in subject area
    • Post-print on Institutional or Central repositories
    • Publisher version cannot be used except for Nucleic Acids Research articles
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
    • Eligible UK authors may deposit in OpenDepot
    • Publisher will deposit on behalf of NIH funded authors to PubMed Central, Nucleic Acids Research authors must pay their fee first
    • Some titles may use different policies
  • Classification
    ​ yellow

Publications in this journal

  • Annals of Occupational Hygiene 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hierarchical Bayesian framework has been developed for exposure assessment that makes use of statistical sampling-based techniques to estimate the posterior probability of the 95th percentile or arithmetic mean of the exposure distribution being located in one of several exposure categories. The framework can synthesize professional judgment and monitoring data to yield an updated posterior exposure assignment for routine exposure management. The framework is versatile enough that it can be modified for use in epidemiological studies for classifying the arithmetic mean instead of the 95th percentile into several exposure categories. Various physico-chemical exposure models have also been incorporated in the hierarchical framework. The use of the framework in three settings has been illustrated. First, subjective judgments about exposure magnitude obtained from industrial hygienists for five tasks were treated as priors in the Bayesian framework. Monitoring data for each task were used to create a likelihood function in the hierarchical framework and the posterior was predicted in terms of the 95th percentile being located in each of the four AIHA exposure categories. The accuracy of the exposure judgments was then evaluated. Second, we illustrate the use of exposure models to develop priors in this framework and compare with monitoring data in an iron foundry. Finally, we illustrate the use of this approach for retrospective exposure assessment in a chemical manufacturing facility, to categorize exposures based on arithmetic mean instead of 95th percentile.
    Annals of Occupational Hygiene 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity).
    Annals of Occupational Hygiene 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric.
    Annals of Occupational Hygiene 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The performance of a Markov chain model of the three-dimensional transport of particulates in indoor environments is evaluated against experimentally measured supermicrometer particle deposition. Previously, the model was found to replicate the predictions of relatively simple particle transport and fate models; and this work represents the next step in model evaluation. The experiments modeled were (i) the release of polydispersed particles inside a building lobby, and (ii) the release of monodispersed fluorescein-tagged particles inside an experimental chamber under natural and forced mixing. The Markov model was able to reproduce the spatial patterns of particle deposition in both experiments, though the model predictions were sensitive to the parameterization of the particle release mechanism in the second experiment. Overall, the results indicate that the Markov model is a plausible tool for modeling the fate and transport of supermicrometer particles.
    Annals of Occupational Hygiene 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cost and complexity of commercially available whole-body vibration measurement devices is a barrier to the systematic collection of the information required to manage this hazard. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by collecting 58 simultaneous pairs of acceleration measurements in three dimensions from a fifth-generation iPod Touch and gold standard whole-body vibration measurement devices, while a range of heavy mining equipment was operated at three surface coal mines. The results suggest that accelerometer data gathered from a consumer electronic device are able to be used to measure whole-body vibration amplitude with 95% confidence of ±0.06 m s(-2) root mean square for the vertical direction (1.96 × standard deviation of the constant error).
    Annals of Occupational Hygiene 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Construction workers are at risk of developing occupational contact dermatitis. Gloves, when used properly, may protect against chemicals and coarse materials. We investigated the prevalence and determinants of contact dermatitis in a population of Dutch construction workers and aimed at validating questionnaire items on hand hygiene.
    Annals of Occupational Hygiene 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lee et al. (Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements. Ann Occup Hyg 2014a;58:60-73) introduced an approach to measure pump pulsation (PP) using a real-world sampling train, while the European Standards (EN) (EN 1232-1997 and EN 12919-1999) suggest measuring PP using a resistor in place of the sampler. The goal of this study is to characterize PP according to both EN methods and to determine the relationship of PP between the published method (Lee et al., 2014a) and the EN methods. Additional test parameters were investigated to determine whether the test conditions suggested by the EN methods were appropriate for measuring pulsations. Experiments were conducted using a factorial combination of personal sampling pumps (six medium- and two high-volumetric flow rate pumps), back pressures (six medium- and seven high-flow rate pumps), resistors (two types), tubing lengths between a pump and resistor (60 and 90cm), and different flow rates (2 and 2.5 l min(-1) for the medium- and 4.4, 10, and 11.2 l min(-1) for the high-flow rate pumps). The selection of sampling pumps and the ranges of back pressure were based on measurements obtained in the previous study (Lee et al., 2014a). Among six medium-flow rate pumps, only the Gilian5000 and the Apex IS conformed to the 10% criterion specified in EN 1232-1997. Although the AirChek XR5000 exceeded the 10% limit, the average PP (10.9%) was close to the criterion. One high-flow rate pump, the Legacy (PP = 8.1%), conformed to the 10% criterion in EN 12919-1999, while the Elite12 did not (PP = 18.3%). Conducting supplemental tests with additional test parameters beyond those used in the two subject EN standards did not strengthen the characterization of PPs. For the selected test conditions, a linear regression model [PPEN = 0.014 + 0.375 × PPNIOSH (adjusted R (2) = 0.871)] was developed to determine the PP relationship between the published method (Lee et al., 2014a) and the EN methods. The 25% PP criterion recommended by Lee et al. (2014a), average value derived from repetitive measurements, corresponds to 11% PPEN. The 10% pass/fail criterion in the EN Standards is not based on extensive laboratory evaluation and would unreasonably exclude at least one pump (i.e. AirChek XR5000 in this study) and, therefore, the more accurate criterion of average 11% from repetitive measurements should be substituted. This study suggests that users can measure PP using either a real-world sampling train or a resistor setup and obtain equivalent findings by applying the model herein derived. The findings of this study will be delivered to the consensus committees to be considered when those standards, including the EN 1232-1997, EN 12919-1999, and ISO 13137-2013, are revised.
    Annals of Occupational Hygiene 07/2014;
  • Annals of Occupational Hygiene 07/2014; 58(6):782-3.
  • Annals of Occupational Hygiene 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The problem of modeling respiratory protection is well known and has been dealt with extensively in the literature. Often the efficiency of respiratory protection is quantified in terms of penetration, defined as the proportion of an ambient contaminant concentration that penetrates the respiratory protection equipment. Typically, the penetration modeling framework in the literature is based on the assumption that penetration measurements follow the lognormal distribution. However, the analysis in this study leads to the conclusion that the lognormal assumption is not always valid, making it less adequate for analyzing respiratory protection measurements. This work presents a formulation of the problem from first principles, leading to a stochastic differential equation whose solution is the probability density function of the beta distribution. The data of respiratory protection experiments were reexamined, and indeed the beta distribution was found to provide the data a better fit than the lognormal. We conclude with a suggestion for a new theoretical framework for modeling respiratory protection.
    Annals of Occupational Hygiene 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The requirements of the European Union Regulation on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), including the preparation of exposure scenarios for the communication of safe use, are focused on single substances. Since the chemical products used at workplaces are typically mixtures, it is important to ensure that accurate information is available regarding their safe use. The focus of the present study was on the methods for consolidating (combining) the information presented in the exposure scenarios of the individual components of a mixture.
    Annals of Occupational Hygiene 05/2014;
  • Annals of Occupational Hygiene 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies suggest that a wide range of human health effects could result from exposure to carbon nanotubes (CNTs). A National Institute for Occupational Safety and Health survey of the carbonaceous nanomaterial industry found that 77% of the companies used respiratory protection, such as filtering facepiece respirators (FFRs). Despite CNT studies in some occupational settings being reported, the literature for mass-based penetration of CNTs through FFRs is lacking. The aim of this study was to conduct a quantitative study of single-walled CNT (SWCNT) and multiwalled CNT (MWCNT) penetration through FFRs. A CNT aerosol respirator testing system was used to generate charge-neutralized airborne SWCNTs and MWCNTs for this study. The size distribution was 20-10000nm, with 99% of the particles between 25 and 2840nm. Mass median diameters were 598 and 634nm with geometric standard deviations of 1.34 and 1.48 for SWCNTs and MWCNTs, respectively. Upstream and downstream CNTs were collected simultaneously using closed-face 3.7-cm-diameter filter cassettes. These samples were subsequently analyzed for organic carbon and elemental carbon (EC), with EC as a measure of mass-based CNTs. The mass-based penetration of SWCNTs and MWCNTs through six FFR models at constant flow rates of 30 l min(-1) (LPM) was determined. Generally, the penetrations of SWCNTs and MWCNTs at 30 LPM had a similar trend and were highest for the N95 FFRs, followed by N99 and P100 FFRs. The mass-based penetration of MWCNTs through six FFR models at two constant flow rates of 30 and 85 LPM was also determined. The penetration of MWCNTs at 85 LPM was greater compared with the values of MWCNTs at 30 LPM.
    Annals of Occupational Hygiene 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of epidemiologic evidence suggests an association between exposure to cleaning products and respiratory dysfunction. Due to the lack of quantitative assessments of respiratory exposures to airborne irritants and sensitizers among professional cleaners, the culpable substances have yet to be identified.Purpose: Focusing on previously identified irritants, our aims were to determine (i) airborne concentrations of monoethanolamine (MEA), glycol ethers, and benzyl alcohol (BA) during different cleaning tasks performed by professional cleaning workers and assess their determinants; and (ii) air concentrations of formaldehyde, a known indoor air contaminant. Personal air samples were collected in 12 cleaning companies, and analyzed by conventional methods. Nearly all air concentrations [MEA (n = 68), glycol ethers (n = 79), BA (n = 15), and formaldehyde (n = 45)] were far below (<1/10) of the corresponding Swiss occupational exposure limits (OEL), except for ethylene glycol mono-n-butyl ether (EGBE). For butoxypropanol and BA, no OELs exist. Although only detected once, EGBE air concentrations (n = 4) were high (49.48-58.72mg m(-3)), and close to the Swiss OEL (49mg m(-3)). When substances were not noted as present in safety data sheets of cleaning products used but were measured, air concentrations showed no presence of MEA, while the glycol ethers were often present, and formaldehyde was universally detected. Exposure to MEA was affected by its amount used (P = 0.036), and spraying (P = 0.000) and exposure to butoxypropanol was affected by spraying (P = 0.007) and cross-ventilation (P = 0.000). Professional cleaners were found to be exposed to multiple airborne irritants at low concentrations, thus these substances should be considered in investigations of respiratory dysfunctions in the cleaning industry; especially in specialized cleaning tasks such as intensive floor cleaning.
    Annals of Occupational Hygiene 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Past epidemiological studies of workers in a nickel refinery in Clydach, Wales, have shown evidence of large excess respiratory cancer mortality risks [lung cancer relative risk (RR) ≈ 3; nasal cancer RR ≈ 140] in those employed prior to 1930, with risks dropping dramatically in workers hired subsequently. The pre-1930 risks have generally been attributed to high exposures to mixtures of nickel compounds. More recent studies of this refinery's workers have focused on those first hired in 1953, when many of the operations that presumably gave rise to the high exposures were no longer in operation. While these studies have shown greatly decreased lung cancer risks overall (RR ≈ 1.4), and no substantive evidence of increased nasal cancer risk, the absence of reliable exposure estimates have made it difficult to ascertain whether the increased lung cancer risks are nickel related or due to other factors. This study uses nickel measurements from the 1970s to the present, documentation of process changes, and dust measurements taken around the1950s to construct an exposure matrix for the recent cohort. It provides evidence of at least 30-fold decreases in levels of nickel exposure from the 1950s to the present, with estimated inhalable nickel concentrations in the 1950s in excess of 5mg Ni m(-3).
    Annals of Occupational Hygiene 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background:Bioaerosols (organic dusts) containing viable and non-viable microorganisms and their metabolic products can lead to adverse health effects in exposed workers. Standard quantification methods of airborne microorganisms are mainly based on cultivation, which often underestimates the microbial burden. The aim of the study was to determine the microbial load in German composting plants with different, mainly cultivation-independent, methods. Second purpose was to evaluate which working areas are associated with higher or lower bioaerosol concentrations. A total of 124 inhalable dust samples were collected at different workplaces in 31 composting plants. Besides the determination of inhalable dust, particles, and total cell numbers, antigen quantification for moulds (Aspergillus fumigatus, Aspergillus versicolor, Penicillium chrysogenum, and Cladosporium spp.) and mites was performed. Concentrations of β-glucans as well as endotoxin and pyrogenic activities were also measured. The number of colony forming units (cfu) was determined by cultivation of moulds and actinomycetes in 36 additional dust samples. With the exception of particle numbers, concentrations of all determined parameters showed significant correlations (P < 0.0001; r Spearman: 0.40-0.80), indicating a close association between these exposure markers. Colony numbers of mesophilic moulds and actinomycetes correlated also significantly with data of cultivation-independent methods. Exposure levels showed generally large variations. However, all parameters were measured highest in dusty working areas like next to the shredder and during processing with the exception of Cladosporium antigens that were found in the highest concentrations in the delivery area. The lowest concentrations of dust, particles, antigens, and pyrogenic activity were determined in wheel loader cabins (WLCs), which were equipped with an air filtration system. It was possible to assess the microbial load of air in composting plants with different quantification methods. Since allergic and toxic reactions may be also caused by nonliving microorganisms, cultivation-independent methods may provide additional information about bioaerosol composition. In general, air filtration reduced the bioaerosol exposure shown in WLCs. Due to the fact that the mechanical processing of compost material, e.g. by shredding or sieving is associated with the generation of high bioaerosol concentrations, there is still a need of improved risk assessment and state-of-the-art protective measures in composting plants.
    Annals of Occupational Hygiene 04/2014;

Related Journals